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PREFACE TO THIRD EDITION

I~ preparing this third edition it has not been considered
necessary to make any change in the lay-out of the text,
the general form of which seems to have served the needs

of the physicists and enginecrs for whom the book was, ¢

wrilten. )

Cpportunity has been taken, however, to add seme
further notes on vector notation {p. 117}, en thegmarc
formal aspect of the del operator {p. 113} and on haswell’s
equations (p. 118). At the same time a number el minor
alterations and corrections have been made, \\anyindebted
to Professor 8, Chapman, I'.R.S., and Professor .
Cook, I R.&., for kindly criticisms and h€Ppful suggestions
which have cnabled me to make the te\\ clearer and more
accurite. For certain historical faegy’l am indebted to
the late Dr. John BMcWhan. o\

<N

(LABGCOW RN
Fan. 1945, N
wwwidbraulibrary org.in

L PREFACE

)
VEcToR Analysisdsthe natural means of expression for the
three-dimensidgal” problems of physics and cngineering,
because itsreoriciseness and freedom from mathematical
detail enablethe velationships between the various physical
quantifies to be kept clearly in view. Since the pioncer
worl{ of "Gibbs and of Heaviside an increasing number of
tQ?XtSﬁooks and scicntific papers on physical and technical
wubjects have made use of vector methods, until it has now
\become almost essential for any advanced worker in these
sciences to have some knowledge of vector analysis,  Much
good work can be done with the aid of a very few elementary
principles. It is the object of this monograph to give an
introduction to these principles and to explain them from a
physical standpoint, so that they may be easily available to
the busy physicist or engincer approaching the subject for
v



vi VECTOR ANALYEIS

the first ime.  Such workers are usually so much occupied
by their major task as to lack the time necessary to enable
them to seek out such principles as they need to use from
the more comprehensive treatises which aim at mathe-
matical completencss. The monograph is not, therefore,
inteaded for the reader with purely mathematical interests,
whose more rigorous and systematic requirements are fully
satisficd clsewhere. LM

For these reasons the autlook adopted is almost cnti;’ely\
physical ; geometrical matters and questions of an gxgli-
sively mathematical intercst are lhmited to  cssehcials,
Formal proofs of invariance and conditions of doftinuity
in vector processes are replaced by an appealto physical
intuition. Purely analvtical topics of an adwanced kind,
such as Green's theorem, are justifiably ofhatted from such
an introductory treatment as this monograph aims to pre-
sent.  'The reader who later wishes foamend his knowledge
in these and other respects will findvample matcrial in the
standard books listed in the Bibliography.

The reader’s attention is Beawn in particular to two
features. First, the use of ¢timetric projection by Gough’s
{%\g{b%( gg'ﬂfq??g@r%}“i%‘, p. 458, 193%) for certain of
the three-dimensional Qidgrams, a purpose for which this

method is admirab{}xsuited. Second, the inclusion of a

chapter giving a\]a\:iéf sketch of the elementary propertics

of tensors andyadics in their relation to vectors. This is

2 subject, wineh wsually puzzlies and often repels physics

and cngm‘eéring students because of the abstract mathe-

matical ay in which it is generally brought to their notice.
Qg\monograph is based on a course of lectures given
afcw years age to post-graduate electrical enginecring
sstidents in the Polytechnic Institute of Brooklyn, New
N i‘ﬁ)rk. I am particularly grateful to my colleague Dr. A. .
* Small for his valucd assistance in reading the manuscript
and proofs, and for numerous suggestions,
GLASGOW

Fune 1938

>
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CHAPTER I

DEFINITIONS. ELEMENTS OF VECTOR ."\j

ALGEBRA O

&. Scalar and Vector Quantities.  Physical,guanti-
ties are divided into two main classes, each xgj{b'\éharac-
teristic properties and an appropriate algebdd, > .

Sealar quantities have magnitude only and\de potinvolwe

. divéction. Typical scalar quantities ,a’rb.\ tnass, volume,
“density, temperature, clectric poten;isﬂx} charge, &c. The
complete specification of a scalag’giantity requires (i) a
unit of the same kind and (ii) a number stating how many
times the unit is contained iptthe quantity. For example,
to express the mass of z, %}véh @gd{ e re uirc to know
whether the unit is the ’peuhﬂd\,’ e A5a e g?hﬁifﬂe, &c.,
and also how many gfthe chosen units represent the given
mass. Scalar quaﬁtglies are manipulated by applying the
rules of ordinafy\algebra to their numerical magnitudes ;
for this reasaththe algebra of ordinary positive and negative
numbers, 8" often called scalar algebra and the numbers
themselved scalars. .

Veetor quantities have magnitude and direction,  Familiar

les are displacement, force, velocity, acceleration,

28 . . . .
«8tress, electric force, magnetic induction, &c. A vector

»quantity requires for its specification (i) a unit of the same

kind, disregarding direction, {if) a number giving the mag-

nitude of the quantity in terms of this unit and {it) a

statement of direction. For example, the velocity of a

moving body is stated by saying (i} that the unit is miles

per hour, kilometres per second, &c.; (if) how many of
1

N



- YECTOR ANALYSIS ﬁ

the chosen units express the magnitude of the velocity,
and (iii) the sense in which the velocity is directed, e.g. .3
due notth. The combination of conditions (if) and (i)
constitutes the geometric_conception of a directed magni~
tade or wector, quite independent of the kind of vector W8
“quantiy specified By the anit.  ‘The dircctional clement g
will prevent the manipulation of vectors by the simpleg S
numerical algebra applying to scalars ; it is cssential, the@s™
fore, to devise a vector algebra by means of which yegtors
may be handled in a way consistent with the sphysical
problems in which vector quantities occur, TheMaws of
vector algebra differ in several importantsrespects from
those of scalar ulgebra, as will be secn'st'er.

Vector quantitics, though the simplest,.ﬁ(e’ not the only ooa-
scalar quantities found in physics and éngineering.  In the theory
of inhomogencous strain, in the trangfoeations of space invalved
in the theory of relativity and in_ the ‘general theory of eloctros
magnetic machinery, to mentionOnty a few examples, mors comn-
plex non-scalars appear. Thgse are the linear vector functiof,
the. dyadip andlitheatoparpiifach has its own algebro, ditfering
radically from the scalafN\Jaws and more general in form than
vector algebra ; indegd, the particular quantity is characterized
by its algebra. To fminipulate these quantities with conciseness
and ease, higher\ikebraical methods, multiple algebras and the
theory ‘Uf mﬂ‘fﬁ(;eﬁ are widely used. In this glemeontary mono-
graph it iyemde’ possible to do more thun sketch the simplest
propertieswobthese higher non-scalars and their relation to ordinary

vectq{ss;.ﬂie reader will find further developments in the special
treatises referred to in the DBibliography.

O calars are manipulated by six elementary operations, |
“amely, addition and  subtraction, multiplication and
C division, Involution und evolutiop. In each pair the
} ses:onfl Ogeratian is the inverse of the first. Also, multi-
plication is extended addition, and involution {(i.e. raising
»a number to a power) is extended multiplication 3 Dke-

wise, subtraction, division and evolution are successively

extended inverse operations. All these operations are

performed by means of certain laws, which will now be
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stated for addition and multiplication ; they are readily
extended to the other operations and the reader will find
formal proofs in any ‘good tedt-book of algebra:
(i) The law of asseciation can be written as
a+(b+e)=(a+b+c
and ax{bxcy=(axd)xe;
i.e. the result of adding a to the sum of 4 and ¢ is the sameyg QO
as adding the sum of g and b to ¢; with a similar statql
- ment for products. In other words, brackets are um}eu:s-
sary in continucus sums and products, "
(i) The law of commnutation which states tha,L\dstmns
and multiplications can be made in any ordeny i.e.
a+b=0+a, A\
{2
and axb-bxa L&
(iliy The law of distribution, stapyg/that in compound
expressionb involving multlphcatgen and addition the result
is cquivalent to the sum of m(hudual products taken term

by term, as in the rules OV dbraulibrary.org.in
ax{btth=axbraxg
and - (a+bﬁxc—axc+bxc

The three lamiare extended to the inverse operations
by the rule ofsi and additional rules for the manipula-
tion of 1nd1;:es in lnvolutlon are also provided. Finally,
a fourth la,wg fundamental in the logical discussion of inverse
upcratlo}{s, is now usually stated, namely, if ¢ xd =0,

': "\thua—oorb—o

5“ sile these scalar operations and their laws are familiar
; to all as the working processes of arithmetic and algebra,
N
w so familiar indced as to be regarded as self-evident, it is
' quite essential to state them in this formal way since they
characterize scalar algebra. The essential feature of the
algebras of vectors, tcnsors, matrices, &c., is that they all
violate in some way the commutative law for multiplica-

1' uonn and do not nccessarily satisfy Lhe condition that
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- either factor in a product is zero if the result is zero. 'The
physical meaning of these differences between scalar and
vector algebra will be explained later.

« 2, Graphical Representation of Vectors. BSince a
vector is the result of abstracting magnitude and direction
from a vector quantity, independently of the nature of the
quantity concerned, we may represent the vector ﬁmpl};—
(allyb) a line O pointing in the direction from O tasd, -
as in Fig. 1. 'I'he magnitude of the vector is given 10 a

; \Y

www.dbrau libra'l'y ,org:_' in /

Fic. ;,&Deﬁ.mtton of Equal Vectors

('zonvenient smxe\ by the length of the line ; the direction
in space is indicated by an arrow-head marked on the line.
inthe dl%&b‘fd of such vectors it is the custom to distinguish
them bythe use of a distinctive symbol,  Thus, the vector
Ozﬂ\ i8denoted by the Clarendon letter V ; its scalar magni-
ide is stated by the corresponding italic letter 9. A
(ector is unchanged by pure displacement ; it follows,
QN thcrefore, that all parallel vectors of the same length and
. direction are equal ; a vector is not localized. Thus in
" Fig. 1 the vectors V, ¥V, V,, 'V, are all equal, a fact stated
by the relation »
. V=¥, =-V,=V,
in which the meaning of the sign = is extended to include
equality of size and similarity of direction. Reverzing the
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arfdw-head changes the sign of a vector, such as V, in
Fig. 1; then
V,=-%¥

indicates equality of size and opposition of direction.

This definition restricts the meaning of a vector to {he repre-

sentation of size and direction only. Consequently, a veetor ¢
cannot represent eompletely any vector gl 'ltltlt'\ the effect of which€ ™

is changed by simple dlsplaccment many quanutlce arc of tb‘]s
-‘-l\‘nd most notably force. It is clearly insufficient to speufy
force by its magnitude and direction alone, i.c. by its, Secthr.
H the force acts on a rigid body the line of action oy (also be
stated, sihce a change in the line of action alters thegttiue acting
on the body, In the case of a deformable baditHe point of
dction of a force must be specified. These cxarmples are given
“as a warning to the réader not to be temptédiio attribute to a
vector any prepertics, other than those of, c.l?l\gt?‘(d direction, which
properiy belong to the quantity that thazFector is representing to
, scale merely in these particulars.  In othdt words, vector analysis
~muszt always be used with an eye upom the pll}’blc’ll conditions of
the problem to which it is dpph&d

. It is geometrically ob‘?'i’é'tf%’ QHhEURMIMa@‘Jﬁdﬂ of a
vector by a scalar factor S'results in a vector § times the

size of the first and.jn the same direction. In particular,
if v e a xecw\{f..umt size in the dircction of V,

0 V=FPv. . . . . . .{11)
Distinetigfsis often made, particularly in more advanced
work, befween two essentially different classes of quimtitieq
repreqﬁmed by vectors.  The first class includes quantities
suchlms force, dszlcu,emcnt velocity, &c., In which the
vector is drawn in the direction of the quantlty concerned ;
) mere lincar action in a particular direction is involved aml
‘the vector is called a poler gecior. The second class
_includes quan‘ritu,-, such” as angular velpgity, angular
“acceleration, &c¢., in which votary action of some kind takes
place about an axis. Here the vector is drawn parallel
to the axis about which the quantity acts ; the length of
- the vector gives the magnitude of the quantity. The

A
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direction of the vector is conventionally fixed by the rule
of the right-handed screw, ie. when sighting along the
direction shown by the arrow-head, rotation is taken as
clockwise. Such vectors arc named avial oectors, Tk
distinction is a physical one, there Deing little dift
ence in the mathematical treatment of the two classes -
quantities. Indeed, it is difficult in many cases, partigut
larly in dynamics and electromagnetic theory, to #Sigh
vector quantities with certainty to classes in thisyay.
3. Addition and Subtraction of Vectorss, Cohsids
_two vectors A and B, shown in Fig. 2{z), r'og;;c‘s’enting fo:

#

Frc. 2.~—(a) Vector Addition i (B) Vector Subtraction ; {¢) Veetos
. Equation of u Line

example two successive displacements of a point. T hes
Jomnt effect, sum or resultant is obtained by setting off the
‘:'ector B at the end of A and drawing the vector V joininf
the beginning of A to the end of B, ‘I'he same result i
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obtained by starting with B and attaching A to it in a
zimilar way, as shown by the dotted lines. Then

V=A+B=B+4A, . . . .(12)

-~ + sign being understood to mean addition in-this
_imetric sense. Thus the sum of two vectors is the
"n:agonal of the parallelogram of which the vectors are the

';1des; such a sum is commutative, . i.e. independent nf\' N
which vector is taken first.  Subtraction of onc vector from
another immediately follows ; the vecter B to be*sab-

I;racred is reversed and the rule for addition apflied, as

| Hustrated by Fig. 2(b), in which V = A + (=B~ A - B.

A usefuyl geometrical application is showhlNiY Fig. 2(c),
where A and B are given vectors,  If & is'a duriable para-

. teter ranging between + oo and ~ oo the sum of A and
kB is the radius vector from O, gszle ¥,

. r=A+ /B, “

As £ varies, the locus of P willbe a straight line through 4

arallel to B, and the exprédsiow thihelibctoryforgiaf the

‘equation for a straight line.

The reader must pot’\suppose that @l quantitics that may be
epresented by a¢direeted line are mecessarily vector quantities ;
‘the crucial testyis ‘hether they follow the parallelogram law of
addition or ndt.) For example, finite rotation of a rigid body
jabout an axi/gan be represented by a line, of a length propor-
tional to the yvangle of rotation, drawn in the direction of the axis.
A secontVfinite rotation about another axis inclined to the first may
be sifnildtly reprcsented. But their resultant effect cannot be
- {uu;%i by compounding the two finite rotations by the law for the
Véctor sum, as the reader may easily verify in 2 simple case such
4 the motion of a ball on a plane. Finite rotations are not,
|therefore, capahle of representatiqn by vectors ; they require the
-se of tensors and have much more complex laws of manipulation.
| Infinftesimal rotations, engular velocities and accelerations are,
on the other hand, vector quantities (see p. 46).

| With more than two vectors, such as A, B, C in Fig. 3,
ithe sum is obtained by laying off the vectors successively
i 2 : _
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end to end; then the sum is the closing side V of the
polygon of which the other sides are A, B and C. But it
is geometrically obvious that we could start by adding any

Fi1e, 3—Law of Association for V-:QQ;' Addition

. 2\

pair of vecters by the paralleldgiam rule, and to their
resultant add the third vectory | Hence '
V=A+B+C=(A+B)+ C-APB+C)=(A+C)+B. . (1.3)
The sum of any number of Yectors is, therefore, associative,
1.8, 1he g}ét?(l?;‘% mr?tl}'y Bgrzf’ﬂﬂ%ed in any desired manner. The
vectors are not nceessarily all in the same plane ; this is -
more clearly shown by Fig. 5.

4. Comppr}e}lts of a Vector, By reversing the
process of‘addition it is clear that any vector V can be
decompoged into the sum of » vectors, of which # — 1 are
arbitfary’and the last one closes the polygon. In general

€ Yeéctors are not coplanar and the polygoen is not a

ne figure.

The most useful instance is the decomposition of a -
) vector into component vectors along the three orthogonal
axes of cartesian co-ordinates. Fig. 4(c) shows the usual
right-handed system, in which the relative positive direc- .
tions along the axes are chosen such that if O'X is turned .
toward O'Y about 0"Z through the smaller angle, a right-
handed screw would advance along the positive direction
of O’Z; similar relations hold for the axes O'Y and o'X,

A
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always keeping X, ¥ and Z in cyclic order. Let the origin
O be one extremity of a vector V; draw a rectangular
parallelepiped with the three edges which meet at &'

v
- (
P e &
- _""--.___- ‘OQ\
i | O
1 gty ol 1 G
t A 1 >
| | b '..,\\ b3
! I ; (&
' . | RV,
1 : | 1® 3
Il hE | \\\l
: KAl O
|.f_{q | T 1
F T —— - | N - X
DT AN
( iw»
)
‘;3‘«‘
& };\T\ﬁv\«r.d braulibrary.otg.in
NN

\\ Fic. 4.—Cartesian Components of a Vector

lying along the axes and such that V is the diagonal from
O through the solid figure, If V., V,, V, are the
vector intercepts along the axes of X, ¥ and Z respectively,
then :

V=V, +V,+ V., . . . .(14)
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Now let i, j, k denote vectors of unit magnitude obong
" the axes of X, Y and Z respectively ; these are the umil
wvectors along the axes and are frequently used in Jater work.
Then if ¥,, V,, V, are the sizcs of the vectors Vo Vi, V¥
V,=VA, V,=V,jand V.= Ik,
from Equation (1.1); whence ¢ \\\
v V=Vi+V,j+ Tk . . (I;)
‘ In discussing the propmtlcs of a vector ficld we™re
- concerned with the magnitude and direction ofgal¥ector
quantity at every point in space. In reefdngnlar co-
ordinates with origin O let a point in spaceaduch us O in
Fig. 4(b), be specified by the radius vsacpq\':
r=ax+ i+ 2k @l
Since a vector is not affected byt ?p:irallei displaccment,
Equation (%.5) is still the relatirm bétween the components
of a vector and the vector 1tself Nate, however, that as
we Bl@‘iﬁ&ﬁ’ﬁ?@"ﬂb TH W2k nﬁcld Visa fumtmn of pm1~ _
tion ; that is, V and its componcnts Vi Vi Vs are funé™
tions of the varlablgs\@, v, % specifying the p{muon of O
relative 1o O, ( ¢\J
Vector quanti\ies and their vectors are physically inde-
pendent of aaysystem of co-ordinates by means of which
they mayp\Be' expressed ; they are said to be inwariant.
Co-orclmgtc axes are unnecessary, therefore, in vector
\1 The resolution of a vector inta components,
by Equation 1.5, is the connecting link between
2 vgctm' notation and that of ordinary co-ordinate geometry
“\ “with which the reader is already familiar. Sincea vector has
three axial compenents, any vector equation relating vectors
is the equivalent of three scalar cartesian equations relating
‘their components. This conciseness is the great advantage
of vector methods in three-dimensional problems. The
fact that vector quantities are expressed directly by a neta-
tion natural to themselves, instead of by a long and artificial
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system of scalar relationships, enables their essential
physical nature to be kept clearly in view. The resolution
into cartesian components is often useful in the proof of
theorems used in vector analysis ; in the words of Heavi-
side, * When in doubt and diffculty, fly to §, j, k', advice
we shall frequently follow.

Asasimple example find the sum of vectors A, B, C, Ing

- &
terms of their components, e

A=A4i+A4j+4k B-= Bx1+B]+Bk, N\
C=0Ci+Cj+Ck 3

- 'The components along the X axis add duec}ly ; like-

wise those along the Y and Z axes. Theh,\d¢" shown in

}'\Jg 5 :,\\‘:

{ & o . M ier
:\\,%IG. 5.—Cartesian Components of Vector Addition

WoV,i+V,j+Vk=A+B+C
(A + B+ Cli+(4,+B,+C)
+( 4, + B, +CHk . (1.6)
Since the scalar magnitudes in the brackets obey the

ordinary laws of algebra, it follows that vector sums (and
differences) obey these laws also, The component of the
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resultant in any axial direction is the sum of the individual *
components in that direction ; as is geometrically obvious
from Fig. 5,

VoA, + B+ Gy Vy= A, + B, + C, and
V,=4,+ B, + (..

5. Scalar and Vector Fields. A physical quant'ir‘j‘\".\
can be expressed as a continuous function of the positien
of a point in a region of space ; such a function is gitled a
poini-function and the region in which it speé&fies the
physical quantity is known as a field. F ieldg™are of two
main kinds, scalar and vector, according tO\NhE nature of
the quantity concerned, N

A typieal scalar field, sach as the disetibution of tem-
perature, density, clectric potentidller’ of any other non-
directed quantity, is rcpresented oy a continuous scalar
function giving the value of .:t,He' quantity at each point.
Such a function does not madergo any abrupt change of
mapfitadda B FéPany point to another close to
it, a condition satisficd(tn all practical cases. The ficld car
be mapped graphically by a series of surfaces—such as iso-
thermal, equi-d«*\r{@tf or equipotential surfaces—upon each
of which thésscalar has a definite constant value. Such
surfaces, cafled equal or lewel surfaces, are conveniently
chosen go\fhat in passing from one to the next a constant
arbitrdpy “difference is made between the scalars which
chafacterize them. It is evident that the level surfaces
Just lie one within the other and cannot cut 3 for if two
~asuch surfaces could intersect, the scalar values corre-

»-sponding to both must hold along their common line,
which is contrary to our definition, Hence scalar point-
functions are single valued or uniform at every point,

A typicat vector field, such as the distribution of velocity
in a fluid or of electric or magnetic field strength, is repre-
sented at every point by a continuous vector function. At
any given point the function is specified by a vector of

N
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definite magnitude and dircetion, both of which change
continuously from peint te point throughout the field
region. Starting at any arbitrary place, proceed an in-
finitesimal distance in the direction of the vector at that
place, arriving at a closely-neighbouring point.  Procced-
ing thence in a similar way, we shall trace out a curved

ling, the tangent to which at any point gives the direction {

of the vector thereat ; such a curve is a vertfor line, bnersf
flow or flux ine. Vo represcnt the magnitude of the vector,
at any point on a flux line draw a very small surfage per-
pendicular thereto and choose a number of point\sgi)'er unit
area upon this surface numerically equal to «(He ‘magnitude
of the vector. Through each of these pgimts flux lines
can be drawn, The field is then mappedygut by flux lines.
The direction of the lines is that of.fhé“vector function ;
their density, represented by the nmaber of them crossing
per unit area perpendicular to theif“direction, is a measure
of the magnitude of the vectony” It is clear that lines of
flow cannot intersect, since/PhTSAbSaMd HRamEer frifefinite
direction of the vector anthe point where they cut ; vector
point-functions mustélse be single valued at every point.

The physical E;:::@erties of scalar and vector fields will
be considered i{k\gfeater detail in Chapters VII and VIII
respectively. A\

\¥;

N
Y
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CHAPTER 11 oA
'\
THE PRODUCTS OI' VECTORS A hy
1. General. The ordinary idea of a productf\in scalar
algebra, the mere multiplication of a scalap~tmagnitude, ,
cannot apply to vectors because of their dife¢hsnal proper-
ties ; nor is it possible to decide by deduktive reasoning
what form the product of two vecto;g@hould take. BSince
vectars have their origin in physi};ai Jproblems, definitions -
for the products of vectors must\be devised that will be
consistent with the way in which such products occur in
applicatigns to physical scidnte,
iswa\f E{‘f}lp ::)lltg{aglf}nﬁglzgé)liider vectors which represent
a force F and a lincas dikplacemg;_g_ d, their magnitudes
being F and d andithe angle Detwcen their directions f.
Products ef th se'\fwf) quantities occur in two ways. First,
the work don&y the force is Fd cos 6, a scalar quantity,
known as.the scalar product of F and d. The couple
cxerted by-the force has a magnitude Fdsinf and acts
aboutan” axis perpendicular to the plane containing F
a%ﬂf’ It is shown by a vector, called the wector product
of\F and d, drawn along the axis of the couple in a con-
wentional sense to be defined later. We are led, therefore,
™\, to define two sorts of products, namely, the scalar product
I and the vector product,
i - 2. The Scalar Product. The scalar product of two
vectors A and B is defined as the product of the magnitudes
: of the vectors and the cosine of the angle betwecn their
| du-egtions.f ;s shown by Fig. 6, this is the same as the
Aproduct of- the size of one vector with the component of
14 engbue d Pﬂﬂr :



TIHTE PRODUCTS OF VECTORS 15

the other in the direction of the first, and this process is
clearly commutative, since cos § = cos {— §), 1.e. indepen-
dent of the order of the fuctors,

i
i
i
component of :
1
I
I
]

Astong B \ p
, kY ‘\
T g \\ 4 ‘;"
= = K
component of & &
B siong A \V
Fic. 6.—Scalar Product of 'T'we Vedtdrs

be denoted by interposing a dot bpthm\én the wvectors }
then \Y
AB=BA=4gBsl . . .(21)

Thus, by definition, the aca}dn&}dbﬁwﬁbimmpmgumim
On p. 3 it has been pointed out that the product of two
scalars vanishes when elthcr is zero.  The scalar product
of vectors also s&tlaﬁ s his condition, but will vanish in
addition when thetvectors are at right angles. 'I'his is the
first particulaninwhich the laws of vector algebra differ
from Lhose..,éﬁ scalar algebra. When two wvectors are
. pcrpendiquf}}r{ therefore,

N

G ADB =o¢, S §-8-)
@w‘hcn they are parallel,
\“;3 AB=4B. . . . . .(23)

“IfB = A, the scalar produoct of a vector with itself, called
its self-product, is
AA-A2=4% . ., . {249

hence to find the size of a vector calculate the square root
of its self product.

"The qcalar product will
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Applving these properties to the unit vectors i, §, X,
which are mutually perpendicular,

ij=jk=ki=0, . . . . (25}
and Cefrokior, .. . . (26), N

Now examine the scalar product of a vector A with tiie ™%/
sum of two others, B and C, illustrated in Fig. 7(a)y ‘the
l“:&

O (5)
,:?‘F iG, 7.~—(a@) Law of Distribution for Scalar Products; (b) Vector
i"\‘.‘: Equation of a Plane
N\
/ three vectors are not necessarily in the same plane. Since
the resolute of B + C on A is equal to the sum of the
resolutes of B and C, ie. OC = OB + BC,

A{B + €)= 4(OC)y= 4(OB + BC)= AB + A-C. (2.7) |

Hence the scalar product is distributive for addition, as
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is peometrically obvious. By an extension of this process
it is easy to show that
(A+B+. . )(N+O+. . ) =

ANAO+, .. BN+BO+. .. +.. . . {(28)

A particular case is of geometrical interest.  In Fig. 5(&)
let p be the perpendicular from O upon 2 plane Wthh
passes through the extremity of a gwen vector ¢, I1, r\
is the radius vector to any other | point in the plane, then
it 1s obvious that the resolutes of ¢ and ¥ upen p Thyst
be egual, i.e. &

pr—pcor plr—c¢cl=o N0

is the equation of a plane perpendicular 1@ Pthrough the

“end of ¢.  Frem Equation 2.2, (r - ¢) Qus\c lic in the plane
normally to p, as is obvious.

Referring again to Fip. 2(a), thd ‘-.L"J.l‘li product ehables
the wsual formula for the rcs.ultant of two vectors to be
readily found. Their sum is)

Saww.dbraulibrary orp.in
vaw B TORE

Take the self producy.dh both sides ; then from Equations
2.4 and 2.8, NN

VV=V:=A+B)}A +B)= AA+2AB+BB,
or Ly2= A%+ 248 cos § + B2

T'he re{:ﬁr{gular components of a vector are found at
once bPsdking its scalar product with the unit vectors, as
is Qﬁent from Fig. 4; then

. Vi=T1, Vi=V,and Vk=V,. . . (29
\ : lhe scalar product assumes an important fm m in
rectangular co-ordinates, Wrifing from Equation 1.3,
A-Ai+Aj+Akand B=E,i+ Bj+ Bk,

Equations 2.5, 2.6 and 2.8 give
AB=(4,i+ Aj+ AX){(B,i + B)j + Bk)
= A8, + A B, + A.B,. . (2.10)
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That is, the scalar product of two vectors s the sum of
the products of their componcnts along each of the co- -
ordinate axes. If, for example, A is a force and B is a
displacement, the total work done is cqual to the sum of the
works done by the components of force and the correspond-
ing components of displacement, as is physically obvicus, |
3. Line and Surface Integrals as Scalar Products.”)
In Fig. 8, let OA be any curve drawn in a vector ﬁqh{}%d _

N

@ A

" S
LN
%
E XY
in'e

www.dbraulibrary orgin
Fic, 8.—Tangcntia<lf1_}inc Integral of a Vector

dl an element of Jepgth along it at any point P, Tet V
denote the ve tar'at P in a direction making an angie ) with
that of the’ lcrn}th element, Then V-l is the produet of
the lenggh.;of‘the element and the component of V in its
directigh,“i.e. tangentially to the curve ; thus
O Vedl = Veos 0 dl.
.Q\'V'varies in magnitude and dircetion from point to point
”';falong the curve, the integral

AN 4 4

J V-dl=J. Vestdl . . (2.11)

0 ‘o

is defined as the line integral of V along the curve OA.
Such integrals are of very frequent occurrence. Tor

example, if V is a force and dl an element of the path of 2

particle along any curve, the line integral denotes the work -
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done in displacing the particle from @ to 4. Again, f V
is the electric field strength, i.e, the force on unit charge in
an electric field, then the line integral expresses the
potential difference between the points @ and 4. Further,
if V is the velocity at'any point in a fluid and the integral
be taken round a closed curve, the integral is called the \
circtedation of the fluid. In an clectromagnetic field thé‘
linc integral of the electric force round a closed path is the
‘electromotive force in the path ; in a purely electrostatlc
ficld the e.m.f. is zero,

%—’V Consider now any element of arca 4 upon\a surfacc
d: awn in a vector ﬁeld and let V be the mlue of the vector
at the middle of the elerm,nt Draw the ‘pasitive® normal
of unit length 1 on the element ancklet\ ) be the angle
between n and V, as in Fig. g, Then the component of

ouiward ’fux

N
\ & v w dbraulibrary org.in
%

O [
O inward flux
N\ Fic. g~—Normai Surface Intepral of a Vector

V perpendicular to ds is Vin = V cos & and the flux of V
through the element is Vonds. The integral of this taken

* 1f the surface is closed, 1 is drawn outward from the enclosed
volume. If the surface is unclosed, then n is drawn always on the
sarne side of the surface, the normal on the opposite side being
negative, .
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over the surface is called the tofal flux or surface intewral of

V through the whole surface s, i.e.

J.J"V'n ds = jLV cosfds. . . (212 .-"':I

The physical meaning of such surface mtegrals is very

N

simple. Suppose V to dcnote the vector velocity of &

moving fluid in which a fixed surface sis drawn. At oy
point V-n ds denotes the amount of fluid passing normially
through the surface element ds in unit time, and ghig'com-
ponent alone must be considered since the taggential com-
ponent of V necessarily contributes nothihg\}6 the flow
through the surface element. If the floywthrough an cle-
ment is in the sense of the positive orlGutward normal
it is counted as positive ; if in thé\pposite sense, as on
the element ds,, it is negative, (Phe intcgral of these
normal contributions cxpresses the aggregate flow of fluid
through the whole surface imunit time. If the surface is
close‘ﬂ}”’ﬁégtﬁ%l{l(;?ﬁﬁ&fxod?i%épges from the enclosed volume
while negative flux conwerges upon it.  Should the amount
of flux entering by &§ome elermnents be balanced by that
leaving by othegg?.rﬁents in such a way that the total flux
is zero, then cither there are no sources or sinks of fluid
within the eficlesed volume or their sum is zero, Similar
ideas applyto other fluxes, e.g. of electric or magnetic
inductiony of heat, &c.

4(“THe Vector Product. The vector product of two

_ y\eatn?s A and B is defined as a vector having a magnitude

7% .

edual to the product of the magnitudes of the factors and

¢\ “the sine of the angle between their directions, and a direc-

\ ™

tion perpendicular to the plane containing A and B. “The

sense of the product along this perpendicular is defined by

the right-hand screw rule ; if the vector A is turned to-
wards B through the smaller angle, the nccessary rotation
must be clockwise when sighting along the positive normal
unit vector n in Fig. 10. That is, the rotation needed to

‘5
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move A to the position of B and the positive direction of n
are related in the same way as the rotation and translation
of a right-handed screw; this direction of n is that
of the vector product. It follows from this definition that
a change in the order of the factors in a vector product
reverscs the sign of the product, since sin {— §) = —sin §,

BxA=-AxB ¢ *{a;éx:.fw,dbraulibl'ary org.in
Fic. 10.—Vectgr PPoduct of Two Vectors

. N

Hence the vector pro"d}ct of two vectors is not commutative
and the order o‘f\‘hhc terms must be strictly maintained,
a further diffetence between vector and scalar algcbras,
The vector product will be denoted by a cross between the
factors ihcn

\ "AxB=-BxA=4dBsinfn, ., , (213)
whitre'n is a positive normal of unit length drawn from the
Jplarie containing A and B. The product vanishes not

Sonly when either factor is zero but also when the com-
ponent vectors are parallel, again differing from scalar
algebra. When two vectors are parallel,

AxB=o, . ., . . (2.14)
and when they are perpendicular,

' AxB=A4Bn, . . . . (2.15)
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in which case the two vectors and their product are mutaally
at tight angles. Applying these ideas in particular to the
cartesian unit vectors i, j, k,
ixi=jxj=kxk=0,. . . (2.16)
and .
ixj=—jxi=k, jxk=—kxj=i, kxi=—ixk=j. . (z.17), )
The strict cyclic order in these important results should bey
observed. ALY
5. Vector Area. The magnitude of a vector product
is ABsin 6, i.c. the area of the parallelograg, Wit sides
A and B and included angle §. Since the shape of the
figure is not specified by the definition of theyproduct, any
plane area of amount 4B sin § with its pdsifive unit normal
n can be taken to rcpresent a vewfdy®product. By an
extension of this idea we are led €o)the notion of vector .
area. A plane area, such as s in g 71(«), can be regarded
as P%ﬁﬁ?&%}lg&@g};&ggﬁp&g&: id direction.  Its magnitade
is the amount of the dreasand its direction is that of the
normal to its plane. 'The §ign to be attributed to a vector
area is defined with feference to the order in which it is
traced out as viewed from an external point such as O. -
If the direction %ﬁ}radng is counterclockwise as scen from
this viewpoinf, the positive direction of the vector arca is
along the)yrif normal n, the directions of tracing and of n
being refated by the right-hand screw rule. Then s =sn
is the“deéfinition of a vector area s. Vector arcas can be
rﬁsév"ed or addéd just like other vector quantities.
I Fig. 11{h} a tetrahedron is shown with vectors 8,
(\'8;, 8y, 8, drawn to represent the vector areas of its four
3" triangular faces, the outward normal being rcgarded as
positive, Resolve these areas upen any planc, €.g. one of
the faces of the solid, Then some of the projections will
be positive and others negative, the sum of them all being
zery, Hence the total vector area of a tetrahedron is
zero.  This result follows at once from physical considera-
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tions, if the tetrahedron is supposed te be drawn within a
fluid which js in equilibrium under hydrostatic pressure.
Tach face expericnces a foree normal to its plane and
proportional to its arca. Since the fluid within the solid
figure is in equilibrium with that outside it, the resultant
of the forces on its faces is zero ; hence also is the sum of
the vector arcas, since the pressure is the same on ali faces. | \Z*
This hydrostatic demonstration also applies to any fornrs
of solid figure and thus gencralizes the theorem. Geo-

metrically, any polyhedral figure may be divided up‘ into

D
. wiwiv.%xa'}aulibrar_y.ot'g.in

(a) O \

g, r1.—{a) Vector Aregn s\[#) Vector Aren of a Closed Surface

tetrabedra ; cvery ggfrﬁce introduced inta the interior of
the polyhedron méﬁrs twice, once with a positive and
once with a nepative normal. Hence for any polyhedral
surface the tofal vector area is zero. By making the faces
vanishingly #mall and indefinitcly increasing their number
we appedach a closed curved surface over which

) ~§ ,” ds = o,

) 6. Application to Vector Products. Consider now
the vector product of a vector A with the sum of two
others, B and C. In Fig. 12 draw a triangular prism with
its parallel edges in the dircction of A and its end faces as

triangles with sides B, C and B + C. The vector areas
of the triangular end faces are 3B x C and 1C x B, which

3
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cancel ; the remaining vector arcas are B x A, CxA
and A x (B + C) in the scnse of the outward nornoals, -
their sum being zero, Thus

Ax(B+(C)+BxA+CxA=0 _
ie. Ax(B+C)=—BxA—C><A=A><B+A><C . » (2.13).;; .
. (\A

2N
£ 3
w4

Flp:.:'x«z’.-—l'daw of Distribution for Vector Product
A\

Heqe{the vector product is distributive, but the order of
thefactors must be strictly observed. By repeating the
& |

N

Cess it is easy to show that

S BV (AB+, L )x(N+O+. . )= :
O AxN+AxO+, . . BxN+BxO+. . .+... . (219).
for any number of vectors.
These rules epable the vector product of two vectors 10
be expressed in rectangular components. Using the nota-
tion of Equation (1.3),

AxB=(4,i+A,j+ AK)x(B,i+Bj+BK)

=(4,B,— 4,B,)i+(A4,B,—A,B,)i+(4.B,~ 4,8,)k(2.20)
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‘on applying the rules for vector products of unit vectors
and the distributive law, Equations 2.16, 2.17 and 2.1g.
This result is more easily remembered by writing it in the
form of a determinant ; thus,

i § k
AxB=134, A, A4,. .. (2200
‘B, B, B,

7. Products of Three Vectors. The vector product
of two vectors B and C being a vector, can give bethya
scalar and a vector product with a third vector A, “1herc
are, therefore, two triple products, namel} A (B»&\C) and
A x (B x C), which occur frequently in ph},brmi applica-
tions,

The scalar #riple product has a slmgh’, interpretation
lustrated by Tig. 13. (B x C)is a A NEBtOr normal to the

BxC y W
; Q
Ur <3 . ibrary.org.in

,'\ B plane of Bana C

"\‘ I7re. 13,—The Scalar Triple Product
plm’%if B and C, with a magnitude edial to the arca of
thé thaded p'lrallelogram The scalar product of A with
XB x C} is the product of this vector arca and the projee-

tion of A along (B x C); ie. » A(B x C}is the volume of("'

the parallelepiped which has A B, C for its edges
face”of this solid can be faken as the base ; “hence three
equivalent expressions for the volume are

A{B x C)=B{Cx A) = C(A x B), . {2.21)
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cyclic order of the factors being maintained te retain the
volume with positive sign.* Since the order of terms
in a scalar product is immaterial, Equation 2.1, these rela-
tions are equivalent to

(A xByC=(BxCrA=(CxA)yB; . (z21)
so that the dot and cross may be interchanged at will,\ A

'\
¥ . \J

W

1GY 14.—The Vector Triple Product

Threeéctors, therefore, have six identical scalar triple i
prp{i’{ij&fé which may be written concisely as

O i§ k| 4, 4,4

i{&ﬁj - (4,i+A %A k) | B, B, BJ - |B, B, B,

R\ .G, Gl e ¢, c

\*"  When three vectors lie in a plane, the volume of the..

. (221 .'Ji':_j

* Scalar quantities of this kind, in which the sign depends on
the proper cyclic arrangement of the component vector factors,
are called by mathematicians ‘ pseudoscalars ?, to distinguish them
from true scalats, which do not change sign when the reference
axcs are changed from a tight-handed to a left-handed system.
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parallelepiped is zero ; hence the condition for vectors to.

be_coplanar is that theu scalar trlple‘_groduct ¥Anis c';.--'

The vector triple product A x (B x C) can also be illus>
trated geomctrically, as in Fig. 14, The vector (B x €)
is normal to the pldne containing BB and €. Likesvise, the
vector A x {B x C) is normal to the plane containing

A and (B % C), i.c. in the same plane as B and C, Take ¢

the X axis along B, the Y axis at right angles thereto in the
plane of B and C, and the Z axis along (B x C). lhun
in terms of their axial components the three vectors ate,
by LEquation 1.3,

A=Ai+4j+ 4k B=5Biand C= G,;f’% Cyj,
since this choice of axes makes B, = B, <0, = 0. Ex-
pandmg the vector product {B x C) b{[ﬁlumon 2.20,

(B x C) = B.CRG

and also by the same rule, g™

A X (B x C) =4 M&bf/im}y org.in
But from Equation (2. £0) 4
A-C=40C, +-/I C and AB = A8,
so that

A x(Bx () 4,(*13 A,B,C
X(11‘(1 + 408 - A(‘Bl—f‘lﬂ(‘yj
= (4.0, + 4,C,)B - A.B(Ci + G,j).
bubstltuj%lg from above,

NV AXx(BxC={ACB- (A B)C - . (2.22)
F‘{CQterm., of the product invelves the “external factor A
i, 3 scalar “product, first with the extreme and then with

\the mlddle factor. Henge the value_of a .vector triple
Qruduct 15 entlrely dlﬁm ent 1f the order of the factors be
mterchanged o

“Products 6f more than three vectors do not often occur
in physical applications and when encountered they are
easily rcduced by use of the preceding theorems. 'The

"

N
3

A
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results serve to confirm what is already shown by Equations
(2.21), that vectors do mot follow the law of association
for multiplication, p. 3.

8. Summary. Chapters I and II give all the essential
rules for the manipulation of vector algebra. By extending
the meaning of the terms addition and subtraction to the
geometrical proccsses explained ¢m p. 6, sums and diffcl'.\:\-
ences of vectors follow the ordinary laws of commutatmn *
and association, as shown by Equations 1.2 and 1.3, 1t 35,
therefore, immaterial what order or manner of grbuplng
of the vectors is followed when adding or subtrar{ng them.
Vectors and scalars are so far in agreement, Bapimportant
differences appear when products are cogdidercd.

The scalar product of two vectors j¥&emmutative and
distributive, Equations 2.1 and 2 and vanishes when
either factor is zero, exactly as in)Ordinary algebra. It
differs, however, in v.lnlshmg ,whcn the vectors are per-
penﬂiWanb”Fll@ aécb‘fn?"if)wduct of two vectors differs
considerably from the ordinary rules. It is not commuta-
tive (Equation z.13), it“wanishes when the vectors are
parallel, and it is {ﬁtributive only if the order of the
factors is maintaintd unchanged (Equation 2.18). Tor
more than t\w\{}c‘tors the non-commutative nature of the
vector produét causes the ordinary law of association to be
not obcycd, s has been demonstrated in Section 7 of this
chapter.,

hr‘.quhcmatically, veetors can be defined as quantitics
t&at“ require for their manipulation a non-commutative

}.algebra which has the agreements with, and differences
% from, ordinary scalar algcbra that have been summarized
above. Vector algebra is only one of many non-commu-
tative algebras known to mathematicians, but it is among
those that have the greatest practical utility.



CIIAPTER IiI
THE DIFFERENTIATION OF VECTORS <\:)

."\
1. Scalur Differentiation. Let V be a vector which‘ ~

is undergoing a continuous change of magnitude \gnﬁ
direction. In ¥ig, 156V is a small increment w llj\kgwcs

oV 8V RS
gt 5t\\

NS

oW dbraulibrary or gul'z

3
2

~ ?)G 15.—Scalar Differentiation of a Vector

the, \\f' value ¥V + 8V for the vector. Suppose that V
13 ‘a\wector function of a scalar variuble 7; then when §
*Changes from ¢t to £+ 84, ¥ becomes V + 6V The ratio
“0V /8t is the average rate of change of V with £, and as
0t becomes vanishingly small the ratio attains a limiting
value which is the rate of increase of V, i.e.

dv

. e Lim [G—“L:I as O becomes zero.

ot
29
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This is the derivative of 'V with respect to the scal
variable . As V varies, it oxtremily moves Over a curve
and the derivative is a vectar in the direction of the tangent
to this curve at each point. Second, third and higher
derivatives are obtained by similar arguments, by analogy
with the ordinary ideas of scalar caleulus. A
When V is expressed in rectangular co-ordinates, \’ \J)

V=Vi+ i+ Vk; A
N
Vio Vi V. are now functions of ¢ Sincc dng, k are
: A
constant vectors, it follows that 2\

T ra 7_

and similarly for higher derivatiye&é.x\ ]

A most important physical {pstance is when YV iea
vector of displacement and"i”i"s time ; the extremity Of.V
s shenatheuBth gl oving body. The derivaute
dV/dt is the vclocity alang the path at any instant, and
d?V /dt? is the corrggponding aceeleration. ..

2. Differentiat{on of Sums and Products. If V
is the sum offws vectors A,and B, both of which are
functions Qf hen a change of # to £ + §¢ makes

V + 6V = (A +8A) + (B + 0B),
so that\* 4V = §A 1+ 6B.
. ':\n‘
Dividing by 62 and proceeding to the limit gives
O v 4 dA 4B
R\ El S i T R

x 50 that. the operation of differcntiation is distributive, 8
in ordinary caleulus,

For the scalar product V = A-B the increment in ¢ gives
V+3V=(A+5A) (B+8B)=A B+3A-B+A 5B+ SA-6B,
expanding the scalar product by Equation 2.8. Subtract-
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ing A-B, dividing by & and proceeding to the limit,
neglecting second-order terms,
d ’\ d

fA-B) = B A . . {33
ar
‘I'he order of the factors can be changed at will, i.e. the
operation is commutarive, If B = A we have the useful
form for the self product,

fiany = fiay - Seay < aah aa™ . ly

For the particular case of a canstant veetor A2 = 4? i{ommnt
defining the position of a point on the surface of a spher«e of radius
A, dA/d is zero and Equation 3.3z leads to NOWWA/di) = o.
Hence dA/dt is perpendicular to A, 1f a poitymoves on the
surface of a sphere its velocity is always nm:ﬁ%ai te the radius
vector, as is physically obvipus. S

.

For the vector product V= A'x ® e\pammn by Equa-
tion 2,19 gives ™y

[+ 0V = (A +8A) x (B + amw“zafllamlsrbsm&om in
\\ + A % 6B + 0A « §B,

~

leading to ~

w

dB
(A<\B} «B+Ax® . . (34
in which the ofder of the fan,tors must be strlctly roaintained.

Putting’ P& d/dt the reader can easily verify that for
triple ppo\dilcts i

Pl (B\x C)] =2A(B x C) + A{pB x C) + A{B x pC),
apfd >
SN < (B x O = pA « (B x €©) 4 A x (4B x ©)
+ A x (B x pC).
In general, differentiation in vector analysis is seen to
foliow the same rules as in ordinary differential caleulus,

except so far as vector algebra differs from scalar algebra
in the non-commutative pmperty of a vector product,

¢ ’\..

A
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3. Partial Differentiation. These simple properties

of differentiation as applicd to vectors can be extended to

partial derivatives when a vector is a function of more’

than one scalar indcpendent variable. 'The most useful
case is that of a vector ¥V which is a function of the car-
tesian co-ordinates x, v, & of a point in space. If v and 2
remain constant while x increases, the partial devivative
9V /8x denotes the rate of increase of ¥ with respect jco'\qc\.
Likewise changing v and x alone gives the partial deiiva-

a
WA

tives 8V/0y and 9V /82, denoting the rates of incréls® with

respect to ¥ and z respectively.  If now x, v zmd\:? change
simultaneously by differential increments #aydy, dz, the
total change or total differential of V wél,‘bc
- L dv, 8V, V& -

dV = de + —a;dy::lutgdn, .. {38
which is of frequent occurrence, in.physical applications of
"eawﬁgﬂﬁ%ahﬂéa}:ﬁo‘? J?#}’j “ zk is the radius vector
from the origin, then"its differential increment is

dr = dxt + dyj + dzk.

Equation 3.5 may-Be symbolically written as

¥\ o il )

2y
If we now define the operator Y/ by
D .0 .4 2
N\ v=18—x+]@+k_z’

i‘t\s casy to verify that the scalar product of v/, regarded
838 a kind of vector, with dr gives the operator in square
’ brackets. Thus,
dV = (Vdn)V. . . .. (3.5b)
T}.xe operator -V is of immense importance in physical
apph(‘:at’lons of vector analysis, wherein it appears in
assoclation with both scalar and vector operands, These
uses will be fully explained in Chapters IV and V.



CHAPTER IV
THE OPERATOR v AND TS USES

“1. The Operator V. 'I'he differential operator 7{Was
introduced by Sir William Rowan Hamilton and dg¥glpped
by P. G. Tait; it is of central importance in.'ﬁh‘ three-
dimensional physical problems. The symbol YAwas origin-
ally pamed ‘nabla’ after a harp-like ancient Assyrian
musical instrument of similar shape; ,,(iﬂier writers have
called it “atled’, ic. ‘ delta’ reverpedy/ It is now usual
to adopt the term ¢ del’ introduqu' by J. Willard Gibbs,
In cartesian notation ) www dea'auljbrary_org_in
del = ¥ =“1a:+ jéj;- + 1‘5}}‘ v . . (4.7)

which may be appli:e(%\as a directive_diffgrentiator either
to a scalar or to %’?@gtog_ function of space. Again, treat-
ing the differchiiators in V as scalars, we may formally
regard W asyawector which can have either a scalar or a
vector produet with other vectors. In vector amalysis
there aréthtee fundamental operations with ¥V which arc
of ':;s\lt:,él interest. If .5 is a scalar function and V a
vedtor function of space, these operations are (i) V.S, where

'\.S?'facts as a differentiator ; (il) V-V, and (i} WV x V, where

JV 3s treated as a formal vector. (See also p. 113).
~2, The Gradient of a Scalar Field, On p. 12 it

has been shown that certain physical quattities, such as

temperatare or electric potential or any su¢h non-directed -

quantity, can be represented from point to point in space

by a scalar point-function, S, of the co-prdinates. The

33
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entire scalar field can be mapped Tut by level surfaces,
“upon each of which the scalar ?imtinn 5 has a constant
value.” Consider two such surfages very close together

and exarmine a sn small 1 portion oﬁgthjég in the neighbourhood
of a_piven P‘_,u:lt (.4 on the /sudfae characterized by the
constant value S ¢ of the scfl: fi unction the second surface

is specified by a constapg Aalue S + 'dS. This is showng C

N

unit W W

normal &N

n AN 3

'\’\f
—-"“N-___\‘__‘___S,Lds i
www.dbrauli

/ ’~ N/ . . : ..
:\\ o . 4:‘
x \ oricgn :

\“ Fic. 16.—Gradient of a ‘Sealar Point Function

much magmﬁed by Fig. 16, If r is the radius vector
\ v from the origin to the point 4, any point such as B in the
second surface is given by r +dr. The least distance

between the surfaces will be AC, in the dxre(.tmn of tht‘-
unit normal vector o at A and &

If dr be the length of AF, the magnitude of the rate of

_increase at 4 of S in the direction of AB will be 99707
when the two surfaces are vanishingly close togethers
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This rate of increase becomes_greatest in the direction _of
the unit pormal_n, ie. along 4C, when it has the value
aS/dn. _Note thdt
S _4ds
dr on
Hence, if 1 is the unit vector normal to the level surface 2
atapy point in 2 chlar field, t_l_}?, VCLtor naS ‘on gnu, the ?‘

cos f.

and « dlr Lt.T.OTi " This vector 1s c,allecl ‘the. ﬂmdxmz of S at J
the pomt :md s written

-

grad S = 2—‘5-11 e . .’\ {4.2)
Thus, the gradlent of a scalur field is a yector field, the
vector at any point having a magnitucd cqual to the most
rapid rate of increase of S at the pomt and in the dircction
of this fastest yite of ‘acrcase, ie upn,rpcndlcuiar to the
level surface at the point, ,,”

A simple physical exampléy il b reiudirearteoy gdsas,
Suppose S is the potential¥in an clectric field due to static
charges. Then the elestric force at any poipt is in the
direction of the grea.t"@st rate of decrease of potential, ie.
normal to the equipefential surfaces, and has a magnitude
cqual to that rgt f decrease, That is, the electric force
is - grad S,.gud is obviously 2 vector ficld.

It is cléa¥4rom the way that the idea of gradient has
been infjeduced that it is an intrinsic property of a scalar
ficl 'ﬁﬁd is, therefore, a physical notion entirely inde
il nt of any particular system of co-ordinate axes}
‘In other words, the operation denoted by grad is fnvariant

) ¥ 2a. The Operatlon V&, Consider now the vector
: 1;cpresented by

as as A
VS = 5 'Tk

in rectangular co~0rdinates. The vector rates of increase
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of § in the directions of the axes of x, v and z are 135/,
jaS/dy and kaS/9z. Their sum will be a_vector with
the magmtud and dlrecuon “of the total of mmt rapid
ra’ce of increase “of 8, T Yermains 16 show that this ‘cxpres-
§1o1 is equivalent to the gradicnt as just defined. To do
this, take the scalar product on both sides of the gradient \
equamon with an element of radius vector dr, ie. remlv\

dr in the direction of the normal at 4 in 11g 10. J.hen

{grad S)dr = ajnvdr‘ = aqdr cos ) = d:z dS
on o 8 \
since 25/dn is the total normal rate of changewf S. Now
in rectangular co-ordinates, )
_as, 8S, sy
| as 8_d +—dy+awz,
hence, . ™
3Selt oS 05
W dblcg[l‘}%tga)ry or g‘}md’x + @d + g d3
EJS aS BS
( J‘*{)d&l-l"d)]-t-dx‘{)—(\r[))dr,
. aS as L8
so that § =22 o .
ng V8=t k, . o (43)

showing thz.t the opem‘cmns grad and v dpplled to a
scalar po"nt function are identical, Also since the gradient
in a &ealar field is independent of the nature of co-ordinates,
s%a}so is the operator V/ ; it is a-mere convenience, there-
s% e, to express it in terms of %,y and 5. We may regard
WY as a directional d:gfferentmior which, when applled to g
scalar funetion of space, gives the greatest rate of change '
of the function in magmtude and direction’at every point,
L.e. derives from a’scalar field its vector field of gradient. -
- We have here an important case in which a vector field
is derived from a scalar feld by the process of hndmg
the gradient of the latter. It does not necessarily follow.
conversely that all vecior fields can be expressed as the

N

i
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gradient of a scalar function, Tet Vg be a vector which
i3 derived from a scalar S in the form

Ve=grad §= 8.
In Fig. 17 draw any path, such as that marked Path 1,
V=grad S

Fig. 17—Lma\i\regmls in a Lamellar Field

between two poi ‘s\A and £ in the vector ficld and let
Vy make an angle # with the element 41 of the path;
then the Rrgdict of the length of the element and the:
Cump(mc& of Vg in its direction is, from p. 18,

i\~ _ Vycosdl = Vgdl.

T ith is traced out by the extremity of a radius vector
rﬁom the origin ; then dlis cquivalent to dr and we may
\wnte from p. 36,

Vgdl = (V S)dr = (grad Sydr =48,
Hence the line integral'of Vg from 4 to B is

Fij b B
J Vydl = j (grad S)dr = J. S =Sg— 5S4 . (44)
4 A F .
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where S, and Sp are the values of the scalar at the ex-
tremities of the path. Since only the end values are -

. concerned, the line integral has the same value inde. .

pendently of the path followed.
 Now take a closed path, consisting of Path 1 from
A to B followed by Path 2 from B to 4. From Equation
(4.4), since the limits of integration are reversed for the O
second path, the value of the line integral along it
S, — Sp; hence round a clesed path \ 2

7°%&
3

(j;(grad Sydi=o . -..f,i‘- (43)

- Summarizing, when a vector field capN\be expressed &
the gradient of a scalar field, the linc infegral of the vector
taken between two points is independent of the path
followed and is equal to the differerice between the values
of the scalar at its ends ; furthes, the linc integral round
any-slosadrpatibinspdegiyector field is zero.

A vector field Vg derigéd™¥rom a scalar S by the relation
Vg =grad § is sometites called a scalar potential:ficid,
§ being the poten&ial of V. Since space is divided up -
fiato layers or lan{ifiae by the level or equipotential surfaces
of the functiBg\S, Vg is also called a lamellar vector.
Again, singd\the essential property of such a vector i
that its {ifie integral round any closed path is zero, the"
vcctoRlﬁeld is called a mon-curl field, a term which wil
be-explained in Section 4. 7
\,%A simple example is the electrostatic field of charged
\ conductors, which can be specified by a system of equi-
potftntial surfaces. The vector field of electric force i
derived from the scalar potential as its negative gradient

L.e. the electric force is in the direction of the greatest raté

- of fali of potential and has a magnitude equal to that rate.
The line integral of the clectric force between twa points

is the potential difference between them and is independent '

of the path taken ; it represents the work done in moving
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1 unit charge of positive electricity from one point to the
other. Round a closed path the work done is zero, ex-
pressed by the statement that the electromotlive force
vanishes round any closed path in a static eleceric field,
"The reader will be able to construct other physical cxamples
of lamellar vector ficlds, e.g. in the flow of heat with tem- .
perature isothermals or in gravitational attraction with 'g A\
level surfaces. A
“3. The Divergence of a Vector Field. In Fig. 8\
7™

 {
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let V be the valoe of o vector function at the middle of
an inﬁnitcsim@séicmenc of volume with sides dx, dy and
dz paraHng:u’the axes of x, ¥ and 2. The vector 'V has
axial components of magnitude 7, V, and V,. To fix
ide: \h‘e rcader may think_of V_as a vector giving the

velonity of 4 moving fluid in.magnitude and_direction.
'\'.'Considcr the two faces of the volume element, each
with area dy dz perpendicular to the axis of X. On the
left-hand face the value of the # component of the vector
at the middle of the face becomes

et S .
Vg - J‘z?'pédx,

ox
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and may be taken as the value all over the face when this

be_c*:ﬁ_;iqs_}tggi_'s__hmglyu;__‘a[ﬁﬁll:_,J' Similarly, on the right-hand
face the & component is

Vm + %aa—l;zdx.

We now define_the flux through any face as the scalar ¢
product of the vector area of the face and the vector Y\~
i.e. as_the product of the area of the face and the norual
compopent _of the vector upon it, see p. 19. 'LHe flux
is positive when the_component of V_and. thg ‘uitward-
drawn normal on the face of the element are(in“the same

sense. Then the excess of flux leaving the\element over
that entering it in_the X direction is /0

ar, Ve YoN, OV
(V¢+-%- a:dx) dy dz— (Vz—%z&— t%x)dy dz:-?);dx dy d=.

In the hydromechanical case thiélreprcsents the net volume
of I PSS SR8 Mthe X direction. By similar
reasoning the contributidps parallcl to ¥ and Z are

Pvadgar and Ve dy ae

ayimxt\y ¥ and  —Adudyds.
The total nct i diverging from or leaving the clement
is, by Equatign 2.12,

O v, av,
»O (ax + "Eljf"' E)dx dy dz.

\V . . . -
'QQ amount of this flux per unit volume is defined as the

.p}?ivergeme of the vector V and is written

\$

,\: 3

o V. BV, oV,
div -"a-l-“@‘-l-a—z . (4‘6}
Since the divergence is the amount of flux, it is essentially’
scalar. e amount of Hux, 1t 15 essential
If the divergence exists at a point in a fluid, whether
liquid or gas, and is positive, it‘expresses the rate at which-
fluid is flowing away from the point per unit volumc thereat:
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Hence, either the fluid is cxpanding and its density at the
point is falling with tirue, or the point 1 a source at which
fluid s iitering the field. When the divergence is nega-
tive it gives the rate at which fluid is flowing toward the
point per unit volume. In this case either the fluid is
contracting and its density rising at the point, or the
point is & negative source, a sink, at which flnid is leaving

the field. Since most practical liquids arc almost incom-p~
pressible, the existence of divergence in them means the™

presence of a volume distribution of sources or sinks zathey
than changes of density. In the case of non-mdterial
fAuxes, such as those of the thermal, electric et(thignetic
ficlds, the existence of divergence means the\prosence of
a source or sink of flux at the point. Fordxataple, in the
clectric field, posilive divergence meabs that there is
pasitive electricity at the point ; in Mhd‘thermal field the
point Is either & source of heat oz a place where the tem-
perature is falling. =7 0N , )

When the divergence is eyei"_sf:\\’?"lxl?f\’éqx,l?:{:%?ltl' e fitiefieer -
ing any element of space is exactly balanced by that leaving
it and we may write, A :
\ div V = o, B ).
which is true #u many practical problems. Tn a fluid
this means tiat*there can be no sources or sinks in the
field, nor a:fgn its density be changing ; i.e. the fluid is
inwmp(qs}iblc. If the fluxes entering and leaving an
falcn’hgﬁt ‘ere equal, none can have been generated within
itg\the lines of flow of the vector V must either form
,\'clirse_d curves (cf. the magnetic field of a current), or
Wtorminate upon bounding surfaces (cf. the electric field

M a condenser), or extend to infinity, A vector which
Satisfies_this condition is called solenoidal F(jfl_or;.a Greek
word mecaning a tube).

3a. The Operation V'V. Consider now the scalar
product of the operator ¥/ and the vector 'V, Expressed

'y
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in rectangular co-ordinates the rules for scalar products,
Equations 2.5, 2.6 and 2.8 give

0,3 .8 . s Lav, er, oV,
v'v=(l@?@+k5é) (Vel+ V4V k) o +_6'j' e

“that s, _

VV=dv ¥V v oe e {d,;%)‘
Now the operation ¥/ has been shown on phystcal gretmds
to be invariant, i.c. inchen_c_lenﬂt_ of any system, Of axes.

Hence the idea of divergence is also invariant. \This is,
indeed, physically obvious, since the amount & Aux cnter-
ing or leaving per unit volume at a point'idglearly a con-
ception quite independent of any systemMof co-ordinates
that may be used to express the si@p¢” and porition of
the volume element. o\ )

/4. The Curl of a Vector Efeld. It has been shown
on p. 38 that when a vector field can be derived gs the
wBIAGIRGG ofilor segler diedd,, the Tine infegral of the vector
taken round any closed path is zero ; this result is true
no matter what size “ar shape the path may have. A
vector field satisfyinpg\this condition is known as a lameliag_

- field, and s "of ayspecial, though Very imporfant,  class..
Many vectoddields occur in _physical problems, however;
in which the “closed-path line integral is not zcro and
which canhet, therefore, be expressed as the gradient of
a scalahy Point function ; it is to an important property
of {hese more general fields that we now give attention.

aomsider a very small region of such a vector field,
several lines of flow An _which are shown by Fig. 19(a):

S\ the portion s chosen Small enough for the lines td be
) regarded” as nearly straight and parallel. Tnto this field
Pput a small "plané atea; shown for convenience as a rects
angle. When the area is perpendiculac=to the field, as
In position 1, none of the field is directed along any part
of the bounding edge of the area ; the line integral round
1t 1= zero. In position 2, with the arca parallel to the
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field, since the value of the vector along the np[.)c_r fr:llﬂfl

is assumed to be different from that aleny the ],m.\ er e,

the line integral round the :Ji}LlI]d;’ll'}-’IllLIS 4 dinite \';1]!1;;:

Similar argurnents apply to intermsediare positions 5 the

value of the line integral depends, therutore, llp(;ll._t_ht:‘

Jrection of the normal to the arca relative to the ficld, N

drection Wi oo e Ke
V=Y e

s

(b)

¥I1c, rg.—i&{\l of a Vector Point Function

ie. upon tho py\}_{tatﬁgﬂ_ of the given small vector area at {3
the region cogsidered.

In geperal, if we put a small vector area of any shape
at an\z’mnflt in a vector field and compute the line integral
o ?T%WE_Q}Q;_ V around its bounding edge there will be
_gherientation of the area for which the line integral is
wgreatest.  'The amount of this maximum line integral ex-,
% " pressed per unit area is called the curl of the vector field

at the point, and is given the vectorial sense of the positive |
normal drawn_on the small cxploring. arca when in the
position_giving this greatest integral. Some writers usg
the term rotation (bricfly vot.) to denote the same con-
ception, since the onrl is associated in hydromechanics
with the rotation or spin of a fluid in which the particles
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have angular velocity. Physical examples illustrating the
meaning of the curl of a vector ficld will be given later;

\%thc meaning depends very much upon the nature of the
problem,

To calculate the curl in terms of its cartesian com-
ponents, take three inﬁnitesir;}al_ rectangular arcas inter-\
secting mutually at right angles at a point where the
vector field V has components of magnitude Vi, VgV~
as in Fig. 1{6). Taking the positive normals to e aress
along the positive directions of the .\, Y and 7 axes
respectively, the circular arrows indicate the pdsitive senses
in which their boundaries must be traverséd to accord
with the right-hand screw rule for veefor'areas.

As an example, take one of these Argas such as abed in
Fig. 19(8) with sides dw, dy, itg fiotmal being along the
axis of Z. Since the rectangle i§ Yery small, the numerical

- value of the component of V afithe middle of any side may
igasomybly lbertakienrgsidheaverage valuc along that side;
the arrows show the diggctions in which the components
act, Since V7, Vy”V,: ‘are functions of the co-ordinutes
(%, ¥, 2) of the middle of the rectangle, the average values
along the foury&ides ab, ke, de, ad wiil be respectively
- .
Ve — %aa—r;caf}’. V, + %a—a]fdx, Ve + Jz%%rd} and Vy — %?azydx.
Arount\the contour abed the line integral is, thercfore,

N v,
" \\ y y
R v, oV '
S | +[(Vy n %Efd”) - (Vf - %?xgdx)]d}’

that is,
oV, Vi
(?:; B ?}—)dx &.

Since the area of the element is dx dy, the bracketed term
s, the magnitude of the component curl of e vector field

e A

;
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taken ubout the Zaxis, Givin, ing it the sense of -unit vector
k, Therefore, we may write
v, dV;
cwrl, V= [ ¢ - %k,
ox  dy

By fol]o“ing a precisely similar method with the two
remaining rectangles we find the component curls about(

the ¥ and X axcs to Be O

Vs oV, ALY
curly V = (E = )] and curly V = (_6_3; - az )L
Adding the three components gives "’\

arv, av, Ve aV v, s
curl V= (ay -a—:’)l-{<a~ ) (—"{ )k (4.9)

which can Be conveniently written m\he form of a deter-
minant as W

curl ¥V = ‘ ¢ ’awwwf#ybfaalﬁ%l TY.OrRQ o bis)
AN A

~4g. The Operation V x V. Take the vector product

WV ox V of the oper,\(or % and the vector V, expressing

the result ip fangular co-ordinates. Using Equation

2.20 for expanding a vector product,

VoV = (L; +Jaa +ka) x(Vi+Vyj+Vk)

_ YA, el av, ov, N vy Vs K
;\\”'"(gy_ az) +(8.3' x i ox gy}’

“that s,
N : VxV=curlV « .+ {410y
The operation zs, of course, independent of the _system
of axes.

v 5. Simple Exampl(,s of Curl. The meaning of the
operation curl may now. be flustrated by a few simple
examples. First consider a rigid body which is rotating
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with an angular velocity @ about an axis 04, O being a
“fixed point in the body. Then any point P, Fig. 20,

A
% w
|« axis of rotation

s ‘te‘rans/aa‘fbnalf‘\\véf’ocr&'
F1e. 20.—Curl and Ang\il:af Velocity

moves in a circular path about Q.2 with a tangential linear
veloci rlsgtraﬁf_ where 7 is! ‘the distance from O to P.
by \%cct_o_p notatxc%l the .a’hg_uldr velocity is a_vector @
draw _jalong the a‘ﬂs" i;j_é, sense rclated to the rotation by
the right-hand s screw, rule ; ‘the co-ordinatc of P is the |
radius vector r {hen the tangentlal velocity at P i
w x r, which Has.fmagnitude w# sin 8 and is pcrpendzcular
to the plane ontaining w and r#* If in addition the

0

*To ‘g’flfythat itis physically cotrect to treat an angular velocity -
as a vebtor it is only needful to show that two such velocitics
wmp‘eumd as vectors, see p, 7. Let w, be the angular velocity
aBBUY an axis through O; then the tengential velocity at I’ is”

\Glf‘x r, Now let w, be ’ the angular velocity about a second
is through O inclined to the first ; then Phas a tangential velocity

N "" due to this rotation of w, x ¥. But linear velocities compound

vectorially, hence the total linear velocity at P is

W X T Fw, XT=(ty +wy) Xr=wxt,
by the distributive law, Equation 2.18. Ticnee the motion 15 the
same as that due to an angular velocity equal to the vector sum of
the two components. A similar theorem is obvigusly true of

infinitesimal angular rotations and of angular accelerations; it
is nof truc of finite angular rotdtions.
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whole body is moving with a lincar velocity Vo in any
direction, the total velocity at P is

V=v,+wxr,
and erl V= x V=Y xvy+V xwxF.

Now since v, is constant for all points in the hody and is

. = ; . 2\
thus independent of x, v, 7, W x ¥, is clearly zeros

Ny
The dngular velocity w is also a constant vector for all
- - ———— T e e g =
points and can be writfen as .

" 7 { 4
- . . ~&
— = {r - v %
W= d+aojt+ ok, N
where'its componcnts a,, @, @, arc indépendent, there-

fore, of the coordinate T of the point.\P’:'\ Writing
=i+ +.:zk’;‘

and .using Equation 2.20 makes,
wiry dbraulibrary org.in

WX T = (w2 —myi +,.(qb:z%c -,z wey - yx)k.

v
Again, using Equation 226 with Equation 4.1 and remenm-
bering that since o %), o, ate not functions x, ¥, # their

ot N .
derivatives are ze;no,;\lt i5 easy to verify that

v x‘((}\x r) = 2w, + 2m, + 20, K = 2.
Finally, th\é’t}.ffl:ll'e,
C curl ¥V = 26
jﬂndt"\'.:’ =fowrl V. . + . (4.11)

J}'I}m“_ﬁ?.._‘?’hen a rigid body is in motion the curl of its
SVincar velocity at any point gives twice its angular velocity
' in.magnitnde and direction.  (See also p. 113.)

Now examine the motion of a fluid and copsider what
may happen to an infinitesimal volume within it. The
volume can have three kinds of motion simultaneous!y:
(i) It may be moving with a linear velocity of translation
a8 a whole. (i1} If -the fluid is deformable the element
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may change its shape. (iii) It may bc in rotation. At
any instant the little volume muay be regarded as a rigid
body ; the curl of the velocity of the fluid at the point
where the clement is situated gives twice its angular
velocity, the instantancous axis of rotation being that of
the curl. The nature of the rotational motion will be
made clearer by Fig. 21(a), which shows two positions o)
'\

(a) QY

Fi6. 21— Rotational (a) and Trrotatioudl (5) Motion

a small portion of the fluid in Mdvement about an axis
at 0. It is dear that the pértion has rotated ; and if
every \ﬁlﬁ%}@éﬁfﬂﬁwt&% _i?ﬁjt;he'\mlumc imrnediately mu‘nd _
O "has rotated by the sife amount, curl V would give
twice the angular velotiby of rotation zbout O. By con-
trast, Fig. 21(b) shows a small portion of fluid which, in
its motion about ¢, does not rotate; hence there is no
curl V and i angular velocity is zero.

If a moflon 1s such that the velocity has a curl, the
ultimate{particles of the body are in rotation with an
instanq’:_meous angular velocity, 'The motion is described
aspxotational or vortical. I, on the other hand, the par-
.@éle‘s do not rotate, there is no curl and the motion is

. “ srrotational or non-vortical, '
%" Another example of an entirely different kind occurs in
" - the magnetic field of a conductor carrying 2 steady current.
At any point in the field put a very small planc area and
turn it into such a position that the line integral of the
magnetic force taken round its boundary is the greatest
possible ; this value expressed per unit area is the vector
cutl H, ie. the magneto-motive force per unit area at
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the point, If the peint is within the material of the
conductor at a place where the vector of current density
is ¢, then this will be the total current passing normally
per unit area through the elementary path when the line
integral round it is greatest. In clectrormagnetic units,
curl H = 47c, so that the curl of the magnetic force at O
any point is proportional to the current dCTl‘-llt} therth K
and has the same direction. For a point in thefleld
external to the conductor there is no current demﬁty‘and
curl H = o,
v'6. Divergence of a Vector Product. In cefl\n physical
problerns, ¢.g. in caleulating the flux of energpy e electromag-
netic field, it is required to find the vector produdt of two vectors
and then 10 work out the divergence of the fe3ult. Treating this
at present @3 an Cxercise in mampulatlon oﬁ\x cctor operations, we
are to find div (A x B)., Using Fquatmn 2.20, write
V=AxB=(4,B~.4,B U (B B H{ Ao By— Ay Bk

=Pk + 170 + VG W w dbraulibrary .org.in

Now apply Equation 4.6 and\y .
dl\’vggjﬂi_;_?#! aliz ‘.:'
oy Oy i3

24:  BAN ,, (34 34 a4y aAz)
e B"( o5 Bﬂ( oz H) 5 e "o/,
,a% ) (@@; o0R. s (8{?_3 _ @%)
(, - ax o= v/
Using Equﬁtmm. z.10 and 4. g gives
'\" div (A % By = B curl A — A- curl B . {4.12)
\l“blverg,en{.e and Curl of $A. In later work we require
) t'ﬂe\ rvergence and curl of a vector field which is itsclf the product
JAOE 3 scalar ficld S and g vector field A at every point. The com-
y Ponents of the product are Sd;, SAy and 5S4, i
Lsmg EqUAtIOIl 4.6 1o find the duergence,

div SA = —(SAx) +3 SAy) +3 (SAA)

24x aAJ 34 8s 88 za_s
= 5(ae+ B T o +(A$Bx+ﬂ“’a +4cz)

3,
- S div A + (A + A4 + 455 i+—i+ i),
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which from Equation 4.3 Is
divSA=SdivA+AgnadsS . . . (413
Using Equation 4.9 bis the curl can be written

i i k|
curl SA =|a/ax  &/8y  Er .
: LS4, SA, 84, A
the » component of which has the raagnitude ,,i\ %

Gl 4, @ asg\J
5,542 - ;.f-(SAy) = (? L _od ) [A = Ay 5.
Usmg Equation 4.9, the first bracket is the x compone,li”()& u:rl Ay
the second bracket is the x component of (grad .5;5 b\\ as may be

verified from Lquations 4.3 and z.20, Wor ut the other
components gives finally

curl SA = S curl A + (grad@ X A
=Scul A —Q{«%\grad S . . {(4.14)

P N
 \J

L ¢

a3
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FURTHER ADPPLICATIONS OIF THE OPERAT OB‘V
‘I/_The Operator div grad. In Equatior;sf\q..z and
4.3 it has been shown that if S is a scalar ~f§~ncti0n of
position in space, then grad §=V 5 is a, wactor_function
having the magnitude and direction of this greatest rate of

increase of S this vector is the gradient of S and the

| flux lines of grad S cut normally §hr6lugh the level surfaces
E of §. Since grad S is a vectoy ibein have a divergence ;
. lsing Equations 4.8 and %’;;‘trhcﬁl_scalaf quantity is

librar 7
div grad § = VV{VS) =% V{itlSl) :a%}rz?);:g .

From Equations 4.1 andd 4.3,
| ‘ _a@\%a . a\/as, 8S.  aS
. — o 18 v 1 250+ = —kJ.
| div grad & Q’@.ﬁ +]6y + kaz) (axl + By" + 5

Expanding binthe usual rules for scalar products, Equations
2.5, 2.6 al\i’d, 2.8, _
N 2 29 29
Hodiv grad § = o5 + ?—z + -a—g, . . (350)
& ox? oyt oz
a }hc operation . _
O ) 2 92 oo , (5:2)
\n“:’. div grad=a§+éy—a+a—zé—v P LT
’ which is known as Laplace’s operator. Examples of its
use will be found in later chapters. ‘
{/The Operator curl grad, Since grad § is 2 vector,
it is possible to calculate its curl and thus interpret _the
eperation curl grad applied to a scalar point-function,
Now from Lquation 4.9 is and above, since the com-
st

N

CIIAPTER V
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ponents of the vector for which the curl is to be found
are 95/0x, 0S/8y and 95/8z,

. i i k
curl grad § d/ox  o/dy 8/8x

=\ %x(7.S) = | 85/8x aS/dy &S ox R

This result follows at once from physical considerations.)
On p. 38 it has been shown that Vg = grad S is a laiellar
vector, of which S is the scalar potentiul. The.gharac-
téristic feature of a lamellar ficld is that the lings tutegral
of Vg round any closed path is zero. Sincd fhe curl of
a—vector field 18 a particular kind of\elostd-path line
integral, curl Vg = curl grad .S is necesSarily zero as Vg
is lamellar. A typical non-curl fi id/pf this class is the
electric force due to static clectrié’c%largcs.

3. The Operator 772 with) Vector Operand. A

~ vector point-function V maywdhé expressed in terms of its
rectangular companents Wl, V.5, 7.k in the usual way.
S‘iﬁéé‘"#’gf‘ E]}‘;lgﬁ Fye 1515(‘,[ "each sealar functions of position
(%, v, 3), Equation 5.2 applies to them all. 'Yhen if

VAVL+V,i+ VK,

W VIV + Vi + Vi, . . (54)
which is &\result of great importance in electromagnetic
theory andhydromechanics.

4, e Operator grad div. If V is a vector field,
divA"is a scalar field, which, therefore, has 2 gradient.
Ehis new vector, of which div V is the potential, is neces-

Csdrily lamellar because curl grad on scalar operand is

\.f % zero; it may be written as

v 10 <D, BN\[OV. BV, BT,
grad div V=¥ (v V)~ (‘a“@: - ké;,)('az*"ay'*' a;>
(Ve O, BV, (3, o, 0N,
( ot aay axaz) i+ (a‘@; ST a;-a)l

Ve, W, o, .
(axé;;- * 3o “a;z")k - 59

=zera . (5.3
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CHAPTER VI ' e\
'S\
THE THEOREMS OF GAUSS AND STOKES“'

1. The Divergence Theorem of Gauss. Cnnsmler
a closed surface s drawn in a vector field g }he normal
flux through an element of vector area dshs nds, n being
the outward drawn normal, is V-ds = VQlés as explained
on p. 1g. "I'he surface integral of\émh clements will
g,ne the total normal fux through&‘hﬁ surface in the form
given by Equation 2. 12, W W

V ds. \mffc\pra&hbl ary.org.in
< &

“‘

Referring to Tig. 24, an elementary volume dv within

T
closed surface -

Fig, 24.—Gauss’s Theorem

the surface s is shown ; a small cubc has been taken for

convenience, but any shape will suffice. The size of the

element is much exaggerated, mercly for ease in drawing

the diagram. The total flux diverging from this volume
59 :
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is div Vdu, V being the vector at the middle of the element,
and this flux has been computed on p. 40 by calculating
the surface integral of the normal components of ¥V
through the surfuces-bounding the volume. For the fuce
abed the positive direction of the x component of V and
the outward-drawn normal are in the same sense and the
flux is positive. A contiguous cube, shown dotted, has\.)
the same component of V acting through the comnfon®
face—since V and its components are assumed 18 +be

- continuous, as also are the devivatives of these quantitics —

7 &

but its outward normal, shown dotted, is in ,J;K@%ppnsi_tc
sense and the flux s negative. 'I'he surface fltwes through
the common face cancel. This argument ‘san be applied
by adding further elements along the X%is until we reach
an ¢lement which has one face in;'tl;\ surfuce s, shown
shaded ; this alone makes a corftsBution to the normal
flux through s. Applying they same treatment to the
surfutey dbratlibimen@raf Yolime throughout ‘the space

enclosed by 5, we arrivelat a total flux J-j V-ds. But
& g8

at the same time weé have integrated div Vdo throughout
the enclosed volumg and this also measures the total fux.
Equating them,

JJViseJJVnd5 - j”div Vdo - J”v‘w@-, (6.1)

wggfhﬁs Gauss’s theorem of divergence,

K Although the deduction of this theorem is not a rigid mathe-

#natical proof—many such can be found in the larger text-books —

™\ Vit is based on self-evident physical facts. Consider, for example,

& closed surface drawn within a fluid which is moving at a given
point with vector velocity V., The tatal amount of fluid passing
per sccond through the surface can be found in two equivalent
ways. First, by caleulating V-ds, L.c. the product of an element
of surface and the component of velocity perpendicular to it, for
every element of the surfice and adding all the contributions,
Second, by investigating the divergence of a volume element, i.e.
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the ewcess of sources of fluid over the sinks contained in it per
unit volume, and Jotegrating  div Vdo through the enclpsed
volimme, The two results are physically equivalent, since the
exvess of fluid leaving the surface over that entering it must be due
to the net amount of fluid injected into the portion of the field
within ¢ by the agprepate of sources and sinks.

N

2. Gauss'’s Theorem and the Inverse Square Law, ()
In Fig, 23(e) let ds be an elementary portion of a surface,\ *
n heing unit positive normal upon it. From a point 0
draw a conical p::nul touching the boundary of d and
let r, he unit vector in the divection of the 1dclkus vector
T =1, lrom O to the element. Draw sphetes)of radii r
and unity respectively. If di is the arep cut by the
cone from the surface of the sphcre »of unit radius,
dw/1% = ds cos (/%5 dw is called\ghd Solid angle sub-
tended by d5 at 0. The solid angle‘zs regarded as positive
when the angle 0 is acute and .Jiegative when obtuse.
The total solid angle subtmg,l‘g b%uihﬁ#g{%f‘gf“‘é surface
is 47,

Fig. 2 5(6) shows any closed non-spherical surface,
When O is inside the surface an element at 1, 2, or 3
contributes a positive® solid angle. A cone joining O to
elements 4, 5, andh 6 shows that these subtend equal solid
angles at O, Byt while the contributions of 4 and 6 are
positive thdt’of 5 is negative. In gencral, therefore, any
small conedfrom O cuts the surface an odd number of
time%\’equiwlent to a single contribution of dw, Hence

Q@ntn‘e surface s subtends at € a total solid angle of
6" When the vertex of the cone is at O outside the

N\ s(nface, the =surface is cut an cven number of times with

» alternatcly negative and positive equal contributions, as
shown at 7, 8, g, 10, Hence the surface s subtends a
solid angle of zero at an external point, These two facts
are a purcly geometric consequence of the definition of
solid angle,

Consider now the Newtonian potential field of a point
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Fra. 25—Gauss’s Theorem and the Inverse Square Law
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unit mass or other similar pbysical entity placed cither
at O or at . Taking its potential as 1/7, Equation 5.11
shows that we can put in Equation 6.1

V = grad (1/7) = — 1,/r®
and  Veds = — (r,/r%)nds = - cos 0ds/7? = — do,
noting that r, and n are unit vectors with an angle 6\" ™
between them. Then \J

o

j-’”s\-’.ds - - \."‘dm . _\{‘ x(';‘z)

Hence the total closed surface integral ~of"the vector
grad (1/7), c.g. of the total flux of forcesfrom 2 point unit
mass, is - g7 when the mass is inside“the surface and
zero when outside jt. The minud sign means that the
flux is inward, see also Fig. 233 .In both cases the flux

is independent of the P"Sit'mﬁﬁ&%ﬁ%hrﬂgggI}'-}a}’ be
anywhere inside or outsidesthe surfuce. This form of
Gauss’s theorem is extrémely useful and will be used in
Chapter VII, 2

3. Stokes’s THeerem. In a voctor field V draw any

" unclosed surfaceor cap having for its bounding edge a

given closcdburve, and calculate the linc integral of ¥
round the(flosed curve when it is traced out counter-
clockwjse ks shown by the boundary arrows in Fig. 26.
Theafiém Equation 2.11 the value of this integral will be

S

A
\ (]BV-dl,

the circle indicating that a closed path has been traversed.

By means of a system of intersceting lines drawn in
the unclosed surface let it be divided up into infinitesimal
surface elements. Consider the shaded element of vector
area nds, n being the positive unit normal upon it. The
boundary of the element is traced out counter-clockwise,
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this sense and the direction of n following the usual right-
hand screw rule, sec p. 2z2. At the middle of dv the
vector field will have a curl and the scalar product of this
with the vector area will give the compenent of the ling
integral of V round the boundary of ds, i.c. n-curl Vs,
as cxplained on p. 43. A similar process can be applied
to all surface elements, tracing them all out in the s'ime
way, Since ¥V and its denwtl\ es, and hence curl \ are'

>4 A,

closed curva

L v
I"‘;‘&’\:ﬁ.—Stnkes’s Thenrem
\~..'
all supposed™o be finite and continuous functions, the
line 1ntegrQI along the common sides of contiguous elements
will cante), leaving only a contribution from sides that lie
in t‘h{‘g%zcn closed curve. Adding the contributions of all
e]@mhts yields the closed line integral, but in obtaining
L 9t.4 surface integral of mcurl Vds has been simultancously
~amade ; hence,

SEV-dl:Hn-curl Vds. . . . (63)

This is Stokes’s theovem and states that the tangential line
integral of a vector function round any closed curve is
equal to the normal surface integral of the carl of that
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function over any unclosed surface which hus the curve
for its bounding edge ; rigid mathematical proofs taking
account of all the necessary continuity condirions would
be out of place here and will be found in the usual text-
books. ‘L'he converse theorem is necessarily true, ie. if
the line integral of V round a closed curve is equal to the

surface integral of A over any open surface bounded bz’

the curve, then A = curl V. .\

When curl V is zero, Equation 6.3 shows that the glesed-
path line integral of ¥ vanishes ; this has been shiown’on
p. 38 to be a characteristic feature of 2 lamc}kl)\ﬁcld.

4, Tnvariance of Divergence and C}r{l: Gausss  and
Stokes’s theoramns may be regavded from gevcra points of view.
Their physical meaning has already been §tr}sséd, the first theorem
providing &liernalive ways of expressing'thedlux of a vector through
a closed surface, the second piving .pé;uivalcnt ideas for the line
integral of a wvector round a cloged curve. Both results are
necessarily scalar quantities.  Wognt . diodelibraripong e may
look upon them as useful analytical transformations which enable
certein integrals to be rdre simply cxpressed. Equation 6.1
-shows that the volumedintegral of a vector function can be ex-
pressed as 1 surfacesntedral over a closed surface confining the
volume,  Equatd ’{6.53 retluces the integral of a vector over an
open surface &0 taken round its boundary edge.

Returning 'to‘ Equation 6.1, confine the volumec integral to the

74

space withif/an infinitesimal element dv and the surface integral

to its enldsing surface, then

&
’§ 4 ij*da = div V du.

3 The divergence at a point is the value of this surface integral per
unit volume as the element is made vanishingly small, fe.

div ¥V = Lim. [di [ JV-dst as dv becomes Zero,
E'I

Similatly, apply Stokes’s theorem to an infinitesimal plane area
at a given point, turning the area until the linc integral of ¥ ;ound
its boundary has the largest value ; then 0 and curl V are in the

2 &
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same direction and their scalar product is the magnitude of the
curl, say curl V, giving :

(})\-"-d! < curl V ds.

k.

llence, as ds is made vanishingly small,

el V = Lim. i{ﬁ\’ -dl 2 '\
. JS TREX. .M\\ “

and has the direction of n in the position of maximum line igtyg\f%ﬂ.

The ideas of divergence and cutl have been shown ondphisical

grounds to be conceptions independent of any sysleth of vo-

ordinates in which they may be expressed th%%‘c\fnmrianz.
G\

o,

The formulae derived above can be regarded as rety mathe-
matical justification of this property, since po\eo-ordinates are
involved in their deduction, Some mathemaﬁ%& treatizes, indeed,
treat these formulse as definitions of div 'e,i&:’z\furl, building up the
theory of vector analysis thereonm. SN
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CIIAPTER VII
THE SCALAR POTENTIAL FIELD

A

\
1. General Properties. Let S be ascalar point-\fuﬁ{:-
tion which may be mapped out in space by a séhes of
level surfaces, upon each of which the scalar has-adefinite
but diflerent constant valuc, These surfaged divide up
the region of space into a serics of layéts® or laminae.
Associated therewith is a vector ﬁcldﬂ(‘s&. irected every-
where normal to the level surfacoguid. in the direction
of the greatest rate of increasc of § acdny point and having
a magnitude equal to- that mng@ﬂﬁtxmémﬁal-y']@ﬁg_jiﬁ ex-
pressed by LEquation 4.3, o8
Vg = gl‘s?:d g =548
Fig. 27 illustrates thése vonditions for small portions of
(\J

L) grad S

Fia. 27.—The Scalar Potential Field

two infinitesimally-close level surfaces, characterized by

values of S and § + dS respectively.
67
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Referring again to Fig. 17 and Equation 4.4, it has been
shown that such a vector field has the cssentlal property
that the value of the tangential line integral of V¥, along
any path joining two puints /1 and B is the same und equal
to the difference between the values of S at B and 4, ie.

E
[ Vidl = Sp— 5, RS
Ja 2
Hence round any closed path the line integral of ¥ s
zero; in particular round a path of infinitesimal 178 the
integral also vanishes, Le. curl Vg is zero. O
Because of the relation between Vy and+ S, ¥y is called
a lamellar or scalar potential vector field, S bedy 11s potential,
Since the curl is zero, the ficld is algdyealled a son-cirl
or irretational field. AN
2. The Inverse Square Lawh \VPoint Sources. In
practice the greatest interest s found in lamellar fields
buged M RBRthSDRIF Phigvgrses quares. Consider a point
source of vector flux, arpunﬁ” which the level surfaces are
concentric spheres ; thedux lives are radial straight lines
diverging from thed{Seurce. At unit distance from the
source the sphggi’ci}i surface has an arca of 4, if the
source is of ulitstrength this is indicated by drawing one
flux line pedunit of arca to represent the magnitude ol the
vector field™at unit distance. A total vector flux of 47
lines cués?normaﬂy through all spherical surfaces and hence
thg\n’;ﬁgnitude of the vector ficld at any point varies with
the.inverse square of the distance from the source, since
_the spherical area varies directly as the squarc of the
N distance, If the strength of the source is g, the flux is 47

In some fields the peint is an actual source of material fux,
e.g. when liquid is enterinp at a peint within a fluid ; the vector
is then the outward radial velocity of the fluid. In snost custs
however, the flux is non-material, e.g. of heat, or of grawimtiun'al
or electric forees.  Note that in the case of gravity the pornt mass
can only attract another mass placed in its field; the force i
essentially radially inward. But in hydromechanics, heat, elec-
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tricity, and magnetism hoth pesitive and negative sources, the latter
called sinks, can exist, muking possible both outward and inward
fluxes. Tluid or heat may either enter or leave; electric or mag-
netic forces may be cither repulsive or attractive. [vlasses act in
the vectorial sense in the same way as sinks.

Tt will be convenicent to fix ideas by examining an actual
example, namely, the field of elcctric point charges inf’\t~
vacuo. ‘Two such charges of positive electricity have begfiy™
shown by Coulomb’s experiments to be repelled with a
force kq.q,/#* in the line joining them. If unit chargelis
defined as repelling & similar charge 1 ¢m. djsg‘a\'r{t‘ii'ith a

E v’

a *,g’j“\

%r'{u_db aulibrary.org.in

e

»\x;\ Fic. 28.-—Electric Field of Point Charge

“’ .
@ of 1 dyne, we have the ordinary clectrostatic system

Lof units, £ = 1 and gug./7? is the force in dynes between

N

w4

charges ¢, and g, cs.u. Let a positive charge ¢ be put
at (), Fig. 28, then the force per unit positive charge
placed at P is called the electiic force of field strength :
its magnitude is ¢/7® and its direction that of the unit
radius vector Ty, i.e. of T, then

q
S = ;sl‘ 1+
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The potential difference between two points A and I is
defined as the work done against the forces of the field
in moving the unit positive charge from A to & by uny
path. Since like charges ropel, positive work must be
done against the field forces to bring the charges ncarer
together. The work that would be done by the fieid forces
ig £-dr; hence the potential difference is, by definitior )

B By 8y I 110

Now let 4 be at infinity—where & is zerg "‘&;ﬁ"makc B

coincide with £ then the integral becomes/
P \
—j Edr ="2'. '::\\“
,, N\
This is the potential at P, nameliy¥he work done on wnit
positive charge in bringing it frofft infinity to the point r
by ahyvpdtrauliReAEy % gion 5.1 shows that

€ =4%r;’; - grad (—?—)

~ 4

A similar al'ggm‘n;\:nt can be adapted to other ficlds. In
general, let F"l{k\a’ Aux vector at a distance v {from a source
of strengthdyy then the Newtonian potential is defined as

P S 22
: an.(K’:.\“ F=—grad = —grad (g/v), . - (72
\'Q\’\"Ghich the threc cartesian components arc respectively
,\ff' F,=—0¢/0x, Fy— — /8y and F, = ~ d¢/0% . (5.3)
* The vector F points in the dircction of the greatest rate
of decrease of . Tor example, if ¢ is ternperature it i
clear that the flow of heat will be in the direction in which

the tempcrature falls most rapidly.
Since potentials arc scalar functions of space they are
arithmetically additive. Thus, if there are several point

[3
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sources g, ¢, . . . at distances 7, r, . . . from a point
in the field, the potential is

¢=[f_]‘+f—:+...] Coe e (74

This may be extended still further. If the sources A\
. . . - . +& N

are continuously distributed with density o per upif\ ™

area over boundary surfaces the summation becomes, the

integral N

-2 o o

taken over all the surfaces. Each §L{1~Ih£e element is

regarded as a point source yielding a Mewtonian potential,
In Equation 3.1z it has been shown that except at a

point occupicd by a source the $idld F is solenoidal, i.e.

divF = o, then v%95.;\E\%”';w'd[?ral{ljbl:arsf'01‘_3'1'-(‘7‘6)
re. Laplace’s equation: is Satisfied by the potential at all
source-free points jrispace, since div grad ¢ is, by Equa-
tion 5.12, zero.¢ Aicld of this kind is, thesefore, known
28 a Laplarian _?I}sld and ¢ is called a harmonic function.
Equations 7..1',:7.4 and 7.5 may be regarded as solutions
of Equatian(s.6 for various physical conditions.

3. Volume Distributions. In many problems the
field #8\dde to volume distributions of sources, each element
ofwhich acts according to the inverse square law. Familiar

@sanples arc the electric field due to a space charge of
\ tlectrons or of jonized gas molecules, the attraction of
" solid bodies, the flow of internally gencrated heat {as in

an electrically-heated conductor), &c. Letp be the density

of sources per unit volume within a closed sutface s;

@ will be a scalar function of position. Then it dv is a

volume element in Fig. 29, odv is an elementady $ource,

Two cases arise and will be separately examined.
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Let P be outside the surface s, then the total potential

at Pis
s= =

taken over the volume encloscd by s, Also, since pdw is
N

constant for each differentiating operation, e

F=-prad qS and VQ(fJ =0, s\

exactly as before. The fleld external to 2 volume™distri-
bution is solenoidal, i.e. the potential is LaplaGian.
-

Fia. ag4 Pétential of a Volume Distribution
If s i;is% the surface s there is a small difficulty,
since 7 in ghe-denominator of the integrand can now become
zero. Swiround P by a small spherical surface of radius
&; then, taking the volume integral through the space
C ﬁﬁ}fe’d between s and the sphere, P is outside this region
.ﬁ% the integral is finite, Now lot the sphere be made
U Wanishingly small ; then in the limit, its volume approaches
D dv, which varies with ¢3. Since # varies with &, do/r
depends on ¢* and vanishes as ¢ becomes zero, Fence
Equation 4.7 expresses also the potential inside the surface
if it is regarded as the limiting value reached when a small
sphere round P js reduced without limit; the field is not,
however, Laplacian. In Equation 6.2 it has been shown

that when V = grad (1/7) the total normal fux of V
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through a sutface enclosing a source of unit strength is
~ ¢ independently of the position of the source. Hence
when F = — grud ¢, wherc é is due to sources of total
amount ¢, no matter how distributed within the surface s,
the flux is + 47g. In the present case 4 is the volume
integral of the source-density, so that

(ol

Applying the divergence theorem, Equation 6.1,
o

J[ n-Feds = j j } div Fdo = 4:51[[9&9,
R A
so that divF = gm0 =~ div grAQqﬁ\

and Vi = - g, (N e v (7.8)
which is Poisson’s equation. ;Iaﬁcé the ficld in a region
where there is a volume ‘M?Hﬁl%lt’%rasf?”ﬁ‘“ is not
solenoidal. ‘There is divergerice, 1.e. total no raltfx per
unit volume, at any poigt, of an amount equal to 47 times
the density of sourcgs per unit volume.

It is obvious ih\ét.ihc same results will hold for two or
more distribut;eh\v.ources, interpreting the integral, Equa-
tion 777, as-éxiending over all the enclosed volumes. In
the space\Petween them the feld is solenoidal and the
potentidh Laplacian 3 within each volume the field has a
PG{SQ\ﬁl\n potential and has divergence.

4> The Potential Qperation. The integral, Equa-

1ion 7,7, taken over all space may be considered to be the

s “solution of Poisson’s differential cquation, Equation 7.8,

for any distribution of sources throughout space. The
operation of finding the potential due to a given distribu-
tion of source density g is indicated by the notation pot g,
due to Gibbs. ‘Then, making use of Equations 7.7 and 7.8,

¢ = J'JJQ—K:? =potp=~- 4—; pot V% . (7:9)
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Hence the operations
I
- —pot and 2 - . (7.0a
ot () and V() (7.94)
acting on a scalar operand are inverse, one undoing the
effect of the other in much the same way that integration

and differentiation are inverse operations.  Applications{ ™

of this notation have been much developed by G!bkﬁ:
and a few simple cxtensions of the idea will be found, in
the next Chapter. K7,
5. Multivalued Potentials, In mathematical text-
books it is shown that the operations grad Ny and curl,

v
P\ % P/ 6
0 ;
9 A n nyn 2 _y
.\'\\ )] js 585 5 5

N Fic. 3o.—Multivalued Scalar Potential

~as well a3 theorems such as those of Gauss and Stokes,

are valid provided that the scalar or vector point functions
to which they are applied remain finite, frce from discon-
tinuities and single valued within any given region of
space and that the same conditions also restrict their
derivatives in any direction up to the sccond order (so that

N
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operations such us 7 2 may have a meaning). F ortunately,
the conditions of {initeness and continuity are well observed
in most fields of physics and engineering, but important
cases do arise in electromagnetism and hydromechanics
where the idea of scalar potential leads to multivalued
functions. :
Consider first a simple mathematical example, the

potential given by N\

N/

¢ = arctan (y/x) = 0 + ka, A\
where & is any positive integer including zeto. ’Iiht;ri the
“equipotential * surfaces are radial planes 0, 7&olfstant
intersecting along the Z axis, as shown im &g, 30(a).
This intersection violates the condition of sipglé-valuedness
mentioned on p. 12; the axis is terr@d a singularity.
Tuking the gracient, O
8 8 A\AL . :
grad b = b = i;a- F i+ Ko wipe dbwalilibrary org.in
' ¢x oy dz x
e Y e - L(sin B+ cos B)
2y Wyt e
The lines of the vectof, grad ¢, are in the direction of the
counter-clockwise tdngent at any point P, pcrpendicular
to the equipntg?hia * plane through that point. To cal-
culate the linelihtegral of grad ¢ we need
"/ ... Iy — vdx
o oy % g e dyf] = 2T
Vb da"\?{,- o 4_?21 o y2]:| [dei + dyil = 5 e
CO\P%'(Tﬁ:r a circular path round Q in the plane of XY;
Lliﬁ;n, as @ is constant, from
N x—acosf and y =asinf
“we have

dx = — g sin 6d0), dy = a cos 046 and xdy — ydx = adl;

hence

jvg{;-da - Jdﬁ
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along any portion of a civenlar path, Bince it is inde-
pendent of a the integral applies to any path* Lor a

cloged path such as A, Jdﬁ' is clearly #ero, since Lo trace it

out the angle subtended at O by the area is passed over
once positively and once negatively by the radius vector,
from O. ‘This is true even when 4 is infinitesimal ands.
hence curl grad ¢ is zero, as required by Equation 58
Now trace a semicircular path ab, giving a line(i%itg:gral
of 7. Likewise, a line integral along the semdtiele’ a’d’
gives — =, ie. the same magnitude but of eRpofite sign.
But the beginnings and ends of the twa puths are the
same ; hence the value of the line integral depends on
which path is followed as well as upbh its end points.
Round any closed path linked abut’ the axis of Z the
line integral is,t 27 per tour, thePupper sign relating to
rotation %{“’Eﬁg ]g‘.t:?lléé %gg ‘X”‘%‘énl’. pISuc:h Z closed ;ath .
cannot be reduced to zeggwithout cutting through the
Z axis and cannot satisfysEquation 5.3, The potential at
P, defined as on p. 7e, 15 multi-valued, being ingreased or
diminished by 2= fer'every tour made round the axis of Z
before arrivi cr'\:it.T from an infinite distance.
Mathema'g;&m describe a region of space in which
these pheabmtena occur as ¢ cyclic ’ about a singularity in
the reglafi4 in our problem the singularity is the axis of
Z whigre“all the level surfaces intersect. A path such as 4

\lﬁbﬁ can be contracted to zero without enclosing or
oy
3

ting through the singular point or points is °re-

3 dueible *; a path such as abb'a’ is * irreducible * since it
N

cannot be made zero, but can only be made to fit more

* Any path can be resolved into three components, viz. parallel
to OZ, radially from OZ and sround it. 'The first two can add
pothing to the line integral, since the lines of Aow of grad ¢ are
cireular. At any radius g the path around the axis is adf, for 3
small angular rotation. The magnitude of grad ¢ being 1/%
the elernent of line integral is o0,
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and more closely round the singulavity. A cyclic region
can be made acyclic by inserting impassable barriers to
prevent the drawing of irreducible paths, thereby isolating
the singularity.  For example, in Fig. jo{a) take the semi-
infinite plane of ZX to the right of the Z axis as a barrier,
shown shaded. Then {f cannot now exceed 2x and ¢ is
thereby made single valued and the conditions of potential \
thcorv are satisfled. O

N
The problem just examined is easily seen to represcﬁt}«.the
titagnetic field of a current ¢ electromagnetic units in a thin’straight
wire extending to infinity along the Z avis if we jake™
¢ = — 27 arc tan (y/x).
Then the magnetic force s ,\\:
£ »
H=—grad ¢ = (2i/a){~=sin & Q—lcos i
and the line integral of H round a closed’patly encircling the current
is 47, the so-called magnetomotive force Remove the current,
and ler the balf-plane of ZX to the, r}ﬁ}ﬁ‘*béibﬁmdiéd d:ryyaoﬁglln
uniformly-magnetized sheet of moment i per unit area with the
north-polar surface uppermogh ¢Frg. 30(b)). Then the magnetic
field of the sheet and the curgnt arc identical in distribution, but
that of the sheet is acyclis, since no path can pass through it to
cncircle the wire. It§j€\ca1ar potential is ¢ = zi(w — @), f being
limited between o {ﬁd’z—n’ {p. oo}

The fundashental axiom of potential theory is that the
line integral’ot the vector field is independent of the path
traversed Dptween two points ; the theory is not applicable,
therefdde; without some artificlal aid to problems which
dodet satisfy this condition. The mest important case
_iSthe essmi{aﬂy eyclic magnctic field of an electric current
fl’omng in a linear circuit of any shape. Fxploring the
ﬁeld in the usual way, with a unit magnetic pole which is
moved about from point to point, will result in changes in
the amount of flux from the pole which links the cireuit,
inducing electromotive forces therein ; if the current is to
remain constant, this will require adjustments to be made
to the voltage of the battery in the circuit. For every
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complete tour made by the pole round the current, potential
energy * 4mi must be credited to the pole ; this cnergy
is, of course, derived from the battery. Physically, there-
fore, the scalar potential of the field musz be multivalued,
and its cyclic character has this physical explanation, To
satisfy mathematical requirements, however, we replace A
the field of the current by that of a thin, normally- -magneth ™
ized sheet with the circuit as its boundan (,dgt,—khc
eqmwlfmr magnetic shell. The potential due to tlzf. ahell
is dw, o being the solid angle subtended by the LIlLult at
any point in the field, and is smgle-\ralu(,d aqﬁ%qmred by
potential theory, p. 12 ; the ficld is then hdyelic and the
problem has been reduced to one in mapudtostatics ; see
further, p. 86, It is, however, not infagreement mth the
essential physical nature of a currcnt}‘Leld and must be
regarded as a mere mathematical con¥enience.  Agreement
can be sew&ddﬂlﬂnésfwﬂg’:ﬂﬁ ﬁéi@l of a linear current as a
dcgenerate case of the vectdripotential field of a current
carrying medium, as on“p. 34.
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CHAPTER VIII e

THE VECTOR POTENTIAL FIELD A Dy

1. The Magnetic TField of a Steady“'\(}urrent.
Vector potential fields occur most commofly: In electro-
magnetism and in hydromechanics, 1t wilkbc convenient
to introduce the subject by working ou€Ale properties of
the magnetic field of a steady current*a%a‘ practical illustra-
tion of the fundamental ideas ; (the reader will readily
adapt them to any analogous phyeTcAlISFGHIERT ANy whisin
he is interested. o\

We have seen on p. 7j.ihat the space round a circuit
carrying a current is a £yﬁlié region ; the physical meaning
of this is that the work done on 2 unit magpetic pole in
transporting it pnde round a constant current of 1 electro-
magnetic units 48 * 477f ergs. This is the well-known
circuital thedgem.

ConsifledGiow a medium, such as the interior of a copper
conduegor, which is carrying a current distributed in any
giveriivay. The current density at any point is ¢ electro-
magrictic units per sq. cm. of 2 surface perpendicular to
the direction of flow. Draw amy closed curve in the

“*medium and take any open surface having the curve for

its bounding edge. If nds is an element of vector area on
the surface the current through the element is the scalar
product ¢n ds, and that through the whole surface is the
integral of this taken over the entire area, INow calculate
the tangential line integral of the magnetic force H round
the closed curve, in the sense of a right-hand screw relative

79
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to the unit surface-normal n, as in Fig. 313 then the
circuital theorem makes

.
?H-Eﬂ - 4_vz_jj(:-n ds.

Apply Stokes’s theorem, Fquation 6.3, to the left side, then

o\'\
J-J-n‘curl Hds = 45'.:J‘JCA:1 s, O '

“
7

and for this to be true of anv surfuce we must hﬁ\c
cewlH=4mc . . ~\\ (8.1)

OpEN SUrIaCeNSs
n % :: N\

A -

www.dbraul @?argy’ or g -

tube of
current fiow

closed cpr\re M
Fra, 31 -—Cu}l\N Magnetic Field due to Electrie Current

Physmally.l;ﬁls means that we put a very small plane area
at a pojhtGn the medium and turn it about until the line
integralof H round its boundary is the greatest possible;
K:ﬁ‘mount of the integral per unit arca is the magnitude
{Ofcurl H and the positive normal points in the direction
w3of the curl.  But the equation relates this to the current
" density ¢, which must, therefore, be passing normally
through the small area when it is in the orientation giving

the greatest value of boundary line integral.

It is to be noted that since div curl H is zero, Equation
5.6, div c is wero also. Hence currents are solenoidal,
ie. flow in closed paths. Further, since there can be no
such thing 2as a space distribution of free magnetic poles,
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div H is zero also; the lines of magnetic foree must,
therefore, form closed curves.

2. The Vector Potential. On p. 55 we have scen
that when a vector has curl and no divergence it may be
represented as the curl of another vector, called the pector
potential. The resson for this name will now be expluined,
First take at any point in the current-carrying medium,, (),

H-cudA, . . . . . (82)"°
where A is the vector potential of H. Using Equatiolig.7
on the above, ) \\
curl H = curl curl A = grad div A — V24 47z€.
We may, without any loss of gencraliry, \assume that A,
like itz related vectors H and ¢, is SOlC{O‘i{ al 3 then div A
is zero and \S
2A = —gife) .. . (8
L v .,f]fw(\;»\f'w.dbraulibrall‘g,m(' :;%
which is a vector form of Poisson’s equation re tng’
and ¢ within the medinmeaUsing Equation 5.4, put
A=40+ 40+ Ak and c =l + i+ .czk,'
then Q

VA, = ~ 43 .-:;Qi,v 24, = — 4oy and V34, = — 47c,.

If 7 is the didtande from an element of volume, where the
current depsity is €, to any point in the medium at which
the compdutnts of A are to be found, analogy with Equa-
tions £8"and 7.9 gives

B[ arfjjetm a0

i};"ReCt)mbinling the components,
cdv 1 2a .
= = - — pot VA . (8.3)
A jjj " pot € 4,;13 (8.5

the integrals extend throughout the volume in which €
is distributed. _
Equations 8.4 show that the components of vector potens

L
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tial are calcolated from the components of ¢ in exactly
the same way as the scalar potential ¢ is found from a scalar
source distribution of density p. Hence the name vector
potential,. Interpreting Equation 8.5, at the point where
the vector potential is required draw a vector parallel to
the current density ¢ at any other point in the medium,, \
the length of the vector being proportional to the magni'— N
tude of ¢ multiplied by dw and divided by », the distanet
between the points, Repeat for every element of aolume
into which the region containing ¢ can be di¥iled and
sum the vectors obtained ; i.e. integrate theig“effect at the
point for the whole volume. The resultahi\ector is the
vector potential at the point; the samé.fesult is more
practically obtained by calculating A, A+, and vectorially
adding these rectangular compongiits!

By exact analogy with the scalae’potential ficld, p. 72,
the vectot BRI UP 368 0tside the medium: con-
taining ¢ is found by approj)j‘iéite evaluation of the integrals
Equations 8.4 and 8.3, Jnt now

curl H{—:curl curl A = J2ZA =0

at the point, (Bash' component of A satisfies Laplace’s
equation, H iSNbw a famellar vector and can be expressed
as the negafivé gradient of a multivalued scalar potential
Qsay. ‘Hence at points outside a current-carrying medium

the magnetic force is given by
7\

,§~ = — grad £ = curl A,

"

w4t the surface of separation which divides the current-
“\* carrying medium from outside space, the two expressions
“ for A, in the curl and non-curl regions res pectively, redace

to equality. Their analytical forms in the two media are,
however, quite different.®

* A variety of practical cascs will be found in the author’s

treatise, Electromagnetic Problems in Electrical Engineering (Oxford
University Press, 19zg).
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3. The Potential Operation. The quantities A, H, ¢
are all solenoidal fluxes and are related one to the other by
the process of curling, Lquations 8.1 and 8.2, and the
calculation of potential, Equation 8.5. Summarizing these
connexions,

A=pore
H=cwlA=curlpotec o (M

¢ = I— curl I = —I~I~ curl curl A = i—_;curl curl pot.@, N

o

The fortuitous 1/47 is a consequence of the "g&s‘tém of
units that has been used ; it may be abolished by ¢hanging
to the Heaviside rationalized system. The'third relation
shows that the operation denoted by cufPelirl/4n exactly
annuls the operation of computing\thé\ Vector potential.
Again, the first and third shows that®

; ):,\-.f\i’!w.dbraulibrary,org.in
A - pot = — p’ét '61.11'1 Clll‘l A-,
4‘;‘%‘ :n

so that pot/47 and curl cosl also annul.  Hence it follows
that pot and curl cur] afe comsmutative operations ; we may,
thercfore, find the @ector potential either before or after
the operation Uf\%ﬁiible curling. - _

Although tHe, three vectors considered are the only
ones withypli¥sical meaning, we can extend the process in
either djreckion, Adding a fourth, D = curl ¢, it follows
from tli€ tonstruction of the table that H = pot D.  Any
VeQ§t +n the continuous series is the curl of the one imrr{e-
didtely above it (neglecting the 47 factor) and the potential

vof'the vector two below it. Now

H=curlpotc=potD=potcur1c; .

hence it is immaterial whether we calculate the vector
potential before or after calculating the curl.

These relations and many others have been developed
by Gibbs into a complete calculus for manipulating sole-

(86)
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will give the vector potential at a point P when the integral
" is evaluated round the closed circuit. ‘The magnetic force
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noidal vectors, but to pursue it further would be beyond
our present object.

4. Linear Currents. In electrical theory there is
considerable practical interest in the magnetic field of
currents fiowing in infinitesimally thin conductors forming
closed circuits of any configuration. Such circuits are

called linear, since the current is caused to flow along®

straight or curved lines, and are a close appmximation\:‘c‘e
practical circuits of thin wire. In hydromechanics,sich a
linear curve constitutes a vortex filament in amyincém-
pressible fluid, the fluid being in rotation abtit“the line
as axis. In both cases the field is cycliebut non-curl,
The electromagnetic case is often treated \vhagnetostatie-
ally by the * magnetic shell * conceptiory but we shall now
see how vector analysis enables ug .ti),\express the fieldin
terms of vector potential for a médidm frec from currcat

everywhéf@:“é}?&wlﬂ?méy fﬂﬁﬁﬂi‘ﬁ{ constituting the linear

circuit ; precisely similar agguments may be applicd to
vortex filaments in a {luidydr to any other linear singularity.
Let i be the current,in the circuit and ¢ its vanishingly
small cross-sectional ‘area. If t be unit tangent at any
point of the cirgdit} we may put ¢ = it/ and dv = o 4,
where dl is an element of length of the circuit as shown in

Fig. 32 then,
AN/ cdv

itdl = 1.dl

.’\u
andr\ ™ A= ﬂ

I

¥

at Pis
H = curl A =7 curl (jt)d—: = £ curl ét—dl = z’rj; curl :7 dl,
¥

since by Equation 8.6 the operations curl and fmt are
commutative. Using Equation 4.14, substitute 1,7 and
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t thercin ; remembering that the curl is caleulated at P
and that t is not a function of that point, so that curl t
thereat 13 zero, gives

curl (t/7) = [grad {1/r)] x t = — (r3 x )/7®
from LEquation 5.11, ry being unit vector drawn from the
circuit element towards P.  Substitating gives A\

((ryxt)dl  ,fusinfdl R
H=_ié("% =—i§)—-?—-—, . g&&

where  is a unit vector in the sensc of the vectopgroduct

~& &

¢ '\\,:’
F1c. 32.—Ampdre’s Rule for Magnetic Force of Circuit Element
® D {Biot-Savart Law}

of r, and E,}i.e. r,, t and u form a right-handed system.
. For.g‘x}ﬁble, if r, and t are in the plane of the paper u
l iS\Qerpendicularly outward toward the reader. Equation
&8s known either as Ampére’s rule or as the Biot and
<\ Savart luw,* which states that the magnetic force due to an
.) element di of a closed circuit has a magnitude isin 0 dl/r?
' and is normal to the plane containing 47 and 7; the direc-
tions of magnetic force, dfand 7, forma left-handed system,
since II is in the sense of — . :
Calculating curl H, since Equation 5.3 shows curl grad

* The general rule is due to Ampére for any shape of circuit.
Eiot and Savart’s proof applies only to straight conductors.
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(1/7) to be zero, the field of linear currents has no curl
As shown on p. 78, scalar potential theory can be applied
to the cyclic non-curl field by replacing the current by a
uniformly-magnetized shell having the circuit for its
bounding edge. The north polar face of the shell is directed
toward a point P, as in Fig. 33, when the current as viewed

Fio. 33.—Equivalence fiis Mglgnetic Shell and Iinear Current

from P appears¢ run counter-clockwise, If e is the solid

angle subtended y the shell, i.e. by the circuit, at P, then
the scalar potential is taken as

\‘2
H i, giving H=—grad¢ = —igrado . (8.9)
We mew proceed to show that this agrees with the vector
fial,
\Maive the point P a small vector displacement dp in a

\“sense to increase T, the vector joining P to an element 41

of the circuit ; this is equivalent to fixing P and moving the
circuit bodily in the opposite sense to the dotted position.
The element sweeps out a vector area dl x dp which
subtends a solid angle r,"-dl x dp/r2 at P, where r," i8
unit vector in the semse from P to the element. The
integral of this taken vound the whole circuit is the total

[



THE VECTOR POTENTIAL FIELD 87

change in solid angle subtended by the circuit when it is
slightly displaced. Applying the rules for scalar triple
products, Equation z.21, gives

Ul x dp) = dp{TX _puas{TL
5« dp) ~ dp (;.2_ » dl) - pudp (rg x dl),

if p, is unit vector along dp. Dividing by dp and ing\J

tegrating round the circuit gives QO
dm r, N
L =p,sd-L xdl: AN\ 3
dp P (jgr"’ ? A
. L

since P moves away from the circuit this i8(zhe rate of
decrease of solid angle subtended by “theleircuit. But
grad o is the total rate of increase of w 3 Hent€e — pygrad w
is the com ponent ratc of decrease in ‘arb( direction denoted
by D1, equivalent to dw/dp aboye,VAlso if ry is unit
vector drawn towards P from di ry = —r,  Taking the
scalar product with p, in Eqvatii’ g:gbraulibrary org.in
I (ry =

. ) , t
I-I-p1 = iprgr'ﬂf[ @, 53@ = — pl-zﬁwﬁ.-) dl.

For this to be trugyé}f any displécemcnt,
SH-- ;-Sgé%t_li{

which is 'E@Jégion 8.8. Hcnce the scalar magnetic poten-
tial defined by Equation 8.9 gives the same magnetic field
as theyvector potential of Equation 8.7; we can write,
thevefore,

H =curl A = — grad ¢,

?
.\"

7 where A — 3§§ and ¢ = fw, proving the equivalence of
7

the current and the shell in the field produced at any point.

5. Simple Examples of Vector Potential, Tgne 1Eiea
of vector potential is more readily grasped by considering
simple examples of linear currents. First take the case

7
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of an infinitely long, thin wire carrying current along the

positive direction of Z as shown in Fig. 34{a). The lines

of magnetic force are circles with their centres on the Z

axis, the circles lying in planes parallel to the plane of XVY';

in other words, since the wire is infinitely long, the field

distribution in the plane of XY is preciscly similar to that ¢
Hewo A

I =~ . L 3 N/

)

1

|

1

1

!

!-417(
,J"".."'-/

y

4 b owwy.dbrfaulibr ry.glj’glin 3

i ; jﬁaner of (

¥ magnetic force
L/Z/”{*I g

(‘Q\“ (b)
Fis. :M;—Vector Potential of Straight Current
in any gther parallel plane. Since all the clements of
currend axe in the same direction, the vector potential at any
poipﬁtﬁls avector parallel to OZand can befound by a simple
sedldt’ integration, /riting di = kdz and #? = 2%+ a?,
,,};Equation 8.7 gives :

\:' ) A Tk ® dx ;! * H ¢
4 =1 " (ma-z—jI =1k|: arc sinh (z/a)]
- —

=2£k[ arc sinh{z /’a):l

a

i
= 2ik! loglz + 4/(s2 + az}]} = (L, — 2i log a)k,
0
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where € is an infinitcly great constant arising from the
infinitc extent of the * cireuit ’ round which the integral
has been taken. Since we are concerned with derivatives

S
-
ﬁrne of
‘ﬁqﬁ&gry orgin

Fia. 35.—\(3\&%1‘ Potential of Circular Current
of A, the ln‘ia‘géﬁ'ce of this constant is Immaterial ; without
loss of gghetality we can take
"}1 Ak = — 2ik log a = — ik Jog (x? +y2)
SH@ .KI and A, are zet0, the usual expressions for the
R ‘Componcm,s of U.ll'}_ A give, from Equation 4.9,
O H, = 94,/ = - 2iy/(x* + y¥) = — (2t/a) sin 0,
H, =~ 34,/8x= 2ix/(x2 + y3) = (2i/a) cos ),
H,=0. (cf. p 75.)
Burfaces of constant vector potential are coaxial cylinders ;
with equal increments in passing from one to ti{c next
their radii increase in geometric progression. Lines of
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vector potential are, therefore, closely packed together near
the wire and fall in density at greater distances as shown

by Fig. 34(5).

The corresponding multivalued scalar potential is easily found.
Az in Fig. 10 (h) tuke the right-hand half plane of ZX as the

equivalent shell (p. 77). Draw a sphere of unit radius with centre ¢
at P; then the half plane subtends an area gu{m — ),/27 = a{w — 4§

at the spherical surface. This is the solid angle subtended by
the plane and Equation B.9 gives ¢ = 2i(w — ) as on_p 77.
‘The components of — grad 4, i.e. of H, are identical with those
of curl A on p. 85, as the rcader should verify by Lgng Equa-
tion 4.3 and & = arc tan (y/x). )

Another simple case is the current in a circle of wire, as
shown in Fig. 35, the circle lying in ‘the plane of YZ.
At any point on the axis of X the vet&?r potential is zero,
the point being equidistant from)Zll elements of the
circle. Fotawintoffitha-gxisggerer therefore to one side
of the circle, it is geometrically ‘obvious that the resultant
vector potential due to the'Whole circle is a vector parallel
to the tangent at the ngarést part, Let the point describe 2
circle about the mfli; parallel to the current ; then by
symmctry this gr%,ment applics to any point on this locus,
Hence the lincs\of vector potential for a circular current
filament are( parallel circles with their centres on the
commomaxis. To give an expression for A and hence for

H requires the use of elliptic functions and is beyond our

presentdiscussion.
~Thc diagram, Fig. 35, represents also in onc meridianal

2 \ . N .
Plane the lines of flow of fluid about a circular vortex
A\

filament ; the complete picture is obtained by revolving
the diagram about OX.
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CHAPTER IX Ke

THE ELECTROMAGNETIC FIELD EQUATIONS OF
MAXWELL N

1. General. The most striking example of $he’ success
of vector methods s provided by the theorg'gfithe clectro-
magnetic ficld. Although Maxwell introdiced the funda-
mental veetor ideas into the theory, hé did not make any
use of vector analysis in manip ulating'l}is equations, relying
entirely upon the usual lengthy caftdstan methads, It is to
Heaviside, Lorentz and many_ligct Woribisulirary mewstn
turn for the exchusive adeption of the concise vector
equations and their treatmignt by purely vectorial methods.

Our present object“is"to state the necessary equations
and to use them ag @i excrcise in the application of prin-
ciples established\ in earlier chapters. We shall not,
therefore, be cohcerned with questions of a purely physical
nature, for the discussion of which the reader is referred
to the pecial works mentioned in the Bibliography.*
One i assumption will be made throughout this
Ckﬁ}:'f&'r; namely, that the medium sustaining the field is
hemogeneous, i.e. composed of one kind of material in

the region considered, and also isotropic, i.e¢. bhaving
*identical physical properties in all directions at every point,

2. Maxwell’s Equations. At any instant let ¢ be
the current density and I¥ the magnetic force at any pont
in the ficld, both being expressed in elcctromagnetic units.

* See particularly F. W, G. White, Electromagnatic Waves
(Mecthuen, 1934, in this series of Monographs. Also see p. 118.

or .

N
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Then by the method of p. 8o the circuital or magneto-
motive force theorem, LEquation 8.x gives i

curl H = gme.

In deducing this relation, however, a purely conducting
medium was assumed, ¢ being the actual flow of clectric
charges per second normally through unit area. Maxwell ¢ N
observed, however, that clectromagnetic phenomena take,
place in dielectric non-conductors, even in vacuous spac;
in which elcctric flow is impossible. T'o account fér ‘this
he postulated a vector D, known as the electric df'gehzbemem
at any point and having the physical dimensighs)of charge
per unit area, the time rate of change of whishiis called the
displacement current demsity at the point¢\He rcgards the
electric force €, which is the force percnit charge tending
to move electricity at any point,cagvrelated to the dis-
placement P braeh khersangdny as stress is related to
strain in an elastic solid, Ugip electromagnetic uaits, if
w is the dielcetric constagflef the medinm,

AD=kEm . . ()
In gencral 2 semi;g’()x}duétor will exhibit both phenomena,
i.e. true flow of eeciticity, the conduction current, together
with displacerhent or, as an engineer would say, charging
current.  Wiiting the total current density as

bt M) k 0&

7, = e £ e

~C C=c+ = Cta (9.2)
,pﬁt\ﬁxst cquation must be amended to read

\ curl H = 4nC = g7{c + D) = 4me + «E,

using the dot notation as an abbreviation for time differen-
tiation. Maxwell’s asswmpiion that a displacement current
gives rise to a magnetic force in the same way as a con-
duction current was a stroke of genius that led him to the
theory of electromagnetic waves in space and the electro-
magnetic nature of light ; his conclusions were not vetl-
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fied Dy experiient until many years later. The total
current flows in a closed cireuit, i.e. it is solenoidal and

dvC=0 ., . . . . (93)

Again draw in the ficld any closed curve and calculate
the line integral of the clectric force round it. This is the
electromuotive force round the curve and by Stokes’s theorem £, )
can be transformed into the surface integral of curl € takef)
aver any open surface with the curve as its edge. Bat ‘by“
Famthn 8 law the electromotive force is the rate ats v.hlch
the magnetic flux through the surface is decrcagingy’ ILet
B =yl be the magnetic induction or flug\density, u
bemg the permeability, then

ﬁ)gdlmjjnuurlgds— #Hﬁfj.ﬂndf

which to be true for any surfa(;cwlgp&rﬂiﬁddlh}(brdggyco e,

requires

curl S——-—B==~‘u,f1

The lmes of magnc,t;c lmhu,tlon are necessarily solenoidal,
ie.
fv' =udivH =0,

bummarmng \[achils equations for the field are
\ “curl 0 = 4nC = 4:!5:’: + KE, N (Y71

:.\’“.’ curl E=—B = - uH . (95)

togathen ‘with C=c+D,. . . . . {92bis)
s\ div B = o,
aIi'd divD =p,

Q belng the volume density of electric charge at any point.
These general equations will be returned to in Section 5.

3. Conducting Media. When the medium is a con-
ductor there is no displacement current and the main

equations become

curl H = 4zc and curl £=_-8.
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If p is the electrical conductivity of the medium, then
¢ =€, by Ohm’s law ; the equations can now be written
curl B = 4mzpc and curl ¢ = — pB.

Taking the curl of the first, Equation 3.7 gives
cutl cutl B = grad div B — VB = gympp curl e = - 4.?1,1:}}1?.
But div B is zero, so that the equation for B is
VOB - gmyB . L L. 9'67‘
Similarly, by curling the second equation and notmg ‘Bhat
div ¢ vanishes,
Ve = qmuyt . “\ (9-7)
These equations have been solved for. manypractical cases,
¢.g. eddy current induction in wires, baz§or’ plates.
They can be conveniently pur in terh% of vector poten-
tial by defining 2\
www.dbr aullla‘ﬂ{y;\m:‘g]xlh R (%)
together with curl B = gpcy And curl ¢ = - 3B,
Now take the curl of curl,A and choose A to make div A
zero ; then
'?721\ ——qmpe. . . . - (99
The third equati@h lnakcs
c=—vA . . . . . (910)
Eliminating. .,é
A VIA=gmpA . . . . . (911)
4, D"'éfectric Media. In a diclectric there can be no
cml%\puﬁtmn current, so that Equations 9.4 and ¢.§ become
ly

.

\ curl H = «& and curl € = — g H.
~ Curling the first, .
curl curl H = grad div H — V2H = « curl £ =
- KrL((E?EH,.-"aze).
Bince div H = o, this can be written

2 .
(V2 - Klug';z)H =dalH=90, . . (9.12)
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with precisely stmilar forms for B, & and D, The
bracketed operator is known as the d’Alembertian, after
the French mathematician d’Alembert, who first used a
particular form of it in the theory of wave rootion along
elastic swrings. It is pot difficult to show that Equation
g.12 indicates that the components of H {and those of the
other three quantities also) are propagated in the medium\
with a finite velocity 1/4/(xu). In free space this is the

velocity of light, a fact which led Maxwell to the couclusmn

that light is itself an electromagnetic phenomenor.’

5. Energy Considerations. Calculation¥f the energy
conditions in an electromagnetic field provides'an excellent
example of vector methods. Returniu@,to the general
case of a semi-conducting dielectric, ceheider an element of
volume dv in which the electric and magnetlc forces are
€ and H respectively and the cqriduttion current density is
¢. Then the Joule heat geuemte’d"péfi‘ ﬁmmﬂbmt{ymtgwn

clement 1s
dP =E-cdv= (chx + L0y + E6) dxdy dz,

the cartesian form c{?zﬁahng the reader to verify the vectorial
statement, NO\(\l,quatlon g.4 takes

e = L curl H -D,

\<& 47
and N7 4P = I:—I Ecurl H - ED:’ do,
O\Y 47
Pfqﬁqtlon 4.12 gives
div (£ x H) = H-curl € - Ecurl H,
s0 thut JP = l:-—-H wurl € - — div(S = H) — E-ﬁ]d‘v.
47 458

Using the second main equation, 9.5, and also Equation 9.1,

dP = — —[uHH + « £ & + div (€ x H)] dv.
47
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But it is easy to see that Equation 3.3a¢ makes

. ¢ G . g o
T -1.Yn. 1Y ey, o _ 1 Yen
HH Zat(HH) gai(H)dnd g-e 283(6 ).
Also Gauss's divergence theorem, Equation 6.1, trans-
forms the volume integral A

ne.Y

j“- div (€ x H) dv into jj n(€xH)ds, O

the surface integral of the normal componcnt&iﬁ €xH
taken over the surface enclosing a given w;l’t}ne of the
ficld. Finally )

AN
1 ¢ wH? o ¢ .
222 £

x \J. . . (ga3)
- i - )‘ i
which is Basnimg e thparm, chenn
On the left side we have the sum of the Joule heat
generated and the mgg‘nét”xc and electric encrgics stored .
per second in thegvglme. On the right is the total
inward normal ﬂu}i;\bf a vector
O R~ (& x Hy 4,
which is kpown as the Poynting radiant vector. 1t must
represept the rate of flow of encrgy per unit arca norimal
to B\:.;\Note that R is normal to the plane containing
£fnd H and forms a right-handed system with these
Gectors.  Equation g.13 states that the sum of the energy
U%per second wasted in heat and that stored electromag-
netically in any element of volume of an e.m. field has
cntered that element as a flux of energy per second normally
through its bounding surface. '
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CHAPTER X

ELEMENTARY PROPERTIES OF THE LINEAR
VECTOR FUNCTION £\
1. The TLinear Vector Function. The sinyplest
example of a linear vector function is provided by, d kector
U which is a constant scalar multiple of a sccond«%&se{or v,
represented by v
U=£kV, . .- - (10.1)
k being a constant, 'This stmply meandthat U is & times
the magnitude of V and in the sarpe.ditection.  IFV is a
point function of space, so also ismlﬂhifﬂrh‘ﬁﬁél‘% fn
tines.  Vamiliar examples arethe relations between
and II or between D and € in homogeneous, isotropic
media. \
Rather more geng ally, let each component of V be
multiplied linearly By a constant, different for each com-
ponent. Usingeetangular co-ordinates, if
RO AN ZER R vk . . . (102)
and - N U=Ui+Uj+0k - - - (10.3)
then_tfis “more general type of liicar vector function

any

rLfQ{u:es
A U, =kV, Uy~ &V, and U, = RV, . (10.4)
"he vector U is not enly different in magnitude but also
different in direction from the vector V. As examples
may be mentioned the relation between D and £ in crystals,
or that between stress and strain in a erystailine solid ;
indeed any case of anisotropic media in which the rect-
angular axes are principal axes of strain.

Most general of all is the case of complete anisotropy,

o7

N

N\
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where cach component of U is a linear function of all three
components of V. In rectangular co-ordinates the relation
between the components can be written

U, = ke,Vy + koVy + RV

U, =k, V. + RV, + ke Vip v . (10.5)

U, =k,V,+k,V, + k. V.. O\
The nine cocficients characterize the transformation ef -
the components of one vector into those of the other j I
general, &, transforms V, into one of the three Eiﬁé‘of
U, giving a rule whereby to remember the signifidahce of
the subscripts. 'T'he final result of the trandfobrhation 18

U=-0V, . N . (100

. AN .
which may be rcgarded as a generaligalion of Equation
10.1; @ is an operator turning V infq U by a lincar modi-
fication ”fﬁwﬁﬂﬁlﬁbﬁgﬁﬁﬁﬁd by, E(}uatmn 1.5 It 18
rather graphically deseribed as alGariesian fensor, or simply
as a fensor, since the relationobstrain to stress in an aniso-
tropic clastic solid obeying¥Tooke’s law is of this kind.

The operator @ is alfhsometimes called an affinor, for the
following reason. Lef\¥ have the particular value of r, the
radius vector fromahgorigin to a point in space. Then U is 4

vector to @ secon Boint related to the first by a general linear

strain ; the pefhis are said to be in 1:1 correspondence or in
affinity, O

N\

2. S(nple Types of Tensors. The essential part of
a tepsi;&iﬂ operation is the array of cocfhicients, such as kg
Wlﬁ«;h in the general case are nine in number ; this can be
symbolically represented, writing the array in the form of

ka;m kxy k:z:z
@ = liﬁw ky, kw:l e e . . (1o

va matriz ®, thus
zr Py P

* More correctly a sguave matrix. The gencral type of matrix
has mn elements it # rows of = colurmns. Tt represcents the array
of coefficients in m linear equations with » variables and is of a
much more gencral type than we have space to examine heré
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Tensors and their matrices arc manipulated by certain
rules, which are chosen to give results consistent with the
algebra of gronps of linear ¢quations, such as Equation 10.3.

A matrix is a convenient symbol for a whole group and
enables the set of cquations to be handled as a single
eatity. It is beyond our purpose to deal in any detail with A
matrix algebra, but one or two simple rules will b ™
stated,  First, f V= A + B we define >

U,
.

(A + B) =~ DA + OB ;
Le. the tensor operation is regarded as followinglthe same
law of distribution as for multiplication inacaldr algebra.
Second, if @, and @, arc two diﬁcreng {eusors,
DV + BV =DV + OV = (G F DYV 5
i.c, tensors follow the commutativedldwfor addition. This
the reader may readily verify b’y..s'etfing down the sum of
two sets of equations like Equation wassdprhapit. il be in
seen that the sum of two matriees is 2 new muatrix in Fhich
the elements are the sumfg:;f the elecments of @, and D,
Third, a tensor is regafdded as negative when every coeffi-
tlent in its matrix js xcversed in sign.
If the colum s%né rows of a matrix are interchanged,
the resulting terxk)r is the conjugate tensor, for which the

MALIX is_ 5™

O Fa iy ke
’\“ b, = [kzy kyy kzy:l. e v . (108)
] k_trz I3

G¥hen two tensors are such that one is the conjugate of
.{ftﬁe other, inspection of Equations 10.7 and 10.8 shows that
o Ray = kyps By = By 20d Ry =Ry .« (10.)

If a single tensor satisfies this condition it is called sym-

metrical or self-conjugate. It has only six independent

elements and may be written

Our work is limjted to the cartesian tensor and its square matrix,
tor which m = n =~ 3,
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Rew by Fop
Dy = [k:vy Ry kyz:\ .« . (10.10)
k h

Symmetrical tensors are of frequent occurrence in physical
problems and their meaning will be adverted to in Bection 3.
In particular when the relation between U and Vois
referred to principal axes all cocfheients are zero excepf
the diagonal &y, ky, R, corresponding to Lquation ;cipr\‘
When two tensors are such that one is minus thesgin-
jugate of the other, the cocfficients must be 51,1(:21. that
Fo=kyy=hoe= 0, Byy=rhyy ky=—hy and RS, (10.13)
If a single tepsor satisfies this condition isJs® called anti-
symmetrical, anti-self-conjugate or skew, ()it has only three
coefficients and its matrix is

qo }‘::&y: : ke
wwdggauliprary orgaiu” g (10.12)

px Tvpz Tzz

_.f‘::'cz':‘_' k.e_.'z OJ

Since a skew tensor sl‘mr}iéﬂi‘ith a veetor the property of
having only three components, the operation of @, on 2
vector 'V is exactlycequivalent to the vector product of
two vectors, si@ “the final result s itsclf a vector U.

3. The Symmetrical Tensor. The symmetrical
tensor, Eq@afion 10.10, has a simple geometric interpreta-
tion thatlwill now be explained, Let i, j, k in Fig. 36 be
unit. J¢etors along rectangulur axes X, Y, Z. With the
s&q’@ origin let a, b, ¢ be unit vectors along = second set
«of rectangular axes A, B, ¢. The two systems are refated
“Uby the cosines of the nine angles between all possible
pairs of unit vectors, one in each system ; thesc mine
cosincs ‘tnay be represented by the matrix,

i i k

arl L
b[m1 My mg:l
Clr, nyg 7y
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e.g. !, is the cosine of the angle between i and a, &¢.  Since
both systems are rectangular, it is clear that only threc of
the cosines can be independent, i.e. one system can be put
into the position of the other by three independent angular
movements,  Project the i, J, k system into the directions

of a, b, c; then it is geometrically obvious that A
: . oA
a=/0i+4i+Lk \‘
b =md + md + mk . O
¢= N

ad + oaa§ + ke &

I‘lG 36,—Transformation of Axes
N \ /

Now_f2orn Equation 2.4, a®*=b?=¢?=1 and from
E ﬁ}:}on 22 ab=bc-ca=o0o; ake ?=j¥=k¥=1
dKCT* ij=jk =ki=0. Calculating these scalar products
Sgives
)) 2 2 2 2 8 2 -
IR A ARV I TC PR P o (ol g Pl 8
Lty + by + dgmy = mny + mgn, + A, =
ndy +ndy +nd. =0,
which are the well-known six relations between the cosines ;
showing that only three can be 1ndc‘pendentlv chosen,
If the relation of U to V is given in one set of axes,
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what is it with reference to the other ? Lct the a, bzlc
systemn be selected in such a way that they ‘are prmupal
axes ; then, as defined by Equation 10.4,

U =k Va, {'Tb = kbt’rb and E"Y = k V
is the relation between the componcnts along A, B and C

respectively.  Now resolve V,, V,, I, the components of{ \

Vin the X, ¥, Z system, into the other system, thy&
V=1V, + LV, + LV, I, = k1
Vy=m,V,+m, ¥, + msz} and Lb kP,
Vo=nV,+nV,+nV, U, o4&V,

U, = LU, + myU, + 1,0, _(fcfﬂ Rt k),
& (el Ryt g = ko ) Vy
+ (D + ey s+ nlm)V
leemqe I‘CSHE’I#& U%Ea‘i‘f-%%’rw

= {koly + Bgmyn, + ;"Lﬁln?_)l—/
+ (h12 + ﬁbmgz + ka%)V,

A + (Btols + Bymgmg + kg )V,

U, = (RDL + hymomy + ki )V,

+{k, Zs\ksmzm +haan )Vt (Rl 2 kym 2+ Rt PV

Comparing these three relations with Equations 10.3 it
will be f()qu that the coeflicients satisfy Equation 10.9;
the tengar’relating U to V in the system of axes X, Y, Z
is, thefefore, symmetrical like Equation 10,70, It follows
tl?%& ‘any symmetrical tensor corresponds with a trunsfor-

'maﬁon from the principal axes to another rectangular
~system of reference.

It is possible to give a simple graphical construction for
a symmetrical lincar function. Using Equation 10.10 the
function is
V=93,V
Now project V upon U, je. caleulate by Equation 2.10
VU=V,U + VU, + VU,
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Using the symmetry of Equation 10.10 in Equation 10.5,
VU=VD,,V=>F, V2R, VE+ AV
2[R, VRV, + RV Ve + EV, V=SS,

say, where S is a scalar point-function. DBut

Uy = hueVe & ayVy + Fnls = § 3
Lav, O\
and similarly Uy = :% and U, = } éa;z O

But these are the components of  grad S in 133§m§: of
Ve Vyand V, as co-ordinates, Equation 4.3,4‘,& that
U=Ui+ Uj+ Uk=jgrad SNV . (10.13)

A\ % 3%.—The Tensor Ellipsoid

it follows, Ghercfore, that U is a vector perpendicular to
the suplace S = constant in the dircction of the outward
nerfial! But S = constant is an equation of the second
deg e in the rectangular components of V; regarding
wihese as co-ordinates defining the cxtremity P of the
“\ " vector V, the locus of that extremity is a quadric surface
" or conicoid. In particular, if S=1 the surface is, under

certain conditions, the fensor ellipsoid, and
VU = (resolute of V in direction of YU =1 ({10.14)

Hence this resolute in the direction of grad S is the recip-
rocal of the magnitude U of the vector U. Fig. 37 shows
5
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this geometric relation for a tensor ellipsoid set in the direc-
tion of its principal axes.

4. Resolution of a Tensor. Return now to the
general tensor, Equation 10,7, and apply the distributive
law to it and its conjugate; then

P=YD+D)+HDP-D) . . (10.15)
T the reader will write down the matrices for @ + @, and\™
& - @, by adding corresponding coefficients, it is eagy o
see that the former is a symmetrical and the latteré skew
tensor. Hence any tensor relation between tw wectors
is equivalent to the sum of a symmetrical rel’é?fon and a
skew relation, The first corresponds to asgliange of axes
without deformation of the system of refergnce, as has been
shown, and the second to a transforhation of the angles
between the axes themselves, AW

5. Repeated dbensdorOpeyations. In vector theory
we frequently need to expregs'relations between more than
two linearly connected vg:cbo}% in an anisotropic medium.
Thus in electromagnetismithere is a tensor relation between
H and B, and 2 secopd telation between B and the pondero-
motive force on’m?aénetized solids. In a general way, if

O\ P Yy
U F in where @, = | &, &, k. |,
O \ |_kzx kzy kﬂ__.
\\“ . Cyy € —|
.;n\\i" V = @, W where @, = c:: c:,i cji ,
N "'o | S Gy Coz |

what is -the meaning of

U-9,0,W?
The answer is easily found by writing out the three rela-
tions between the components of U and those of V, Equa-

tion 10.5, and the analogous set giving the connexion
between the components of V and those of W. From the
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» which, as the reader can verify, has the important property
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sccond set of equations substitute the components of v
in the first set, giving U in terms of W, The final matrix
for the complete transformation can be verified by the
reader to be @,Py=

(£, pCr b Byt Ryatze) (Rystay+RypCyyt Eyetzy) (kwcm+kwcyz+ky;cz§}.\
(BxtretFoyt yutkestrr) (Beextay+hoytouy T Restoy) (Rzatzet Fayt: yz+kngQ)

(ro0.16)

(lepatigt+ Baytyrt Raetor) (Raatay+ Raoytyy+Ratay) (Fratazt kxysyz+kaczz):1

7°%%
An inspection of this apparently complex matrix'w.’iﬁ show
that its comstruction follows a very simple snle”s The
element in the rth horizontal row and cth wéxtical column
of @@, is obtained by multiplying each, &lement in the
rth row of @, by the corresponding'éle\mcnt in the cth
column of @, and adding the reddlts. It is usual for-
mally to define @, as the  product’ of the two matrices,
the rule for the * multiplication,” heiag-that, s g’iaéqtjil
It is obvious that @,@, willsin general, be quite different
from @,P,; hence the tule for matrix ° multiplication ’,
as also for successive tensor operations, is not commutative.
The algebra of tepgers and their matrices, therefore, fails
in the comm ane’ law for multiplication exactly as we
have eatlier sgert to be true of vectors.
A matris of particular interest is

MK
/ o
I ¥}
1

0 = Q

that
v = Pv =D,

Hence v has the same effect in tensor algebra as unity in
ordinary scalar algebra, since it leaves a vector unchanged,
and is called the unit tensor or unit matrix.

6. The Dyadic. Although tensors are widely used to

nRE

A
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express linear vector relationships in an anisotropic ficld,
there is another method by which this can be done.  The
dyadie, introduced by Gibbs as an essential part of his
treatment of vector analysts, is preferred by some writers,
and its use will now be briefly expluined,

Returning to Equation 10.3 and inserting the values of
U, U, and U, given by Tiquation 10.3, the expression for’ \/

U can be written as . O
U = (R itk j+k XV, +(h, i1k, J+4, K1, + N
(kxziJ"k.',fij -’:k‘_k) VZ
=W+ mV, +n¥, N
say. Using Equation 2.9, V, = i‘V, V,=ivaadV, = k'V,
giving NG
U=li-V+mj-¥V+nk-V~(li+mj+nk): V—‘%I’ N oL (ra1%)

The bracketed expression is known A8 dj- adic and consiats
of the sumvo¥ vhetsedibratiy. ok, which are its dvads.
Each dyad is ‘made up of ty@“wectors in succession, the
first vector being called the “antecedent of the dvad (such
as 1, m, n) and the su,ond vector its conseguent (such as
i J, k) It is to be no@ that a dyad is not a simple product,
but merely a symBolic juxtaposition of two vectors. ln
interpreting the\q\erator . the vector nearest to V in any
dyad is involydd m a scalar product with V, this product
then being(@ scalar multiplier for the remaining vector of
the dyadi,»Comparing Equation 10.17 with 10.6, we sce
that ‘d{e& operation of a dyadic on a vector by means of this
sc‘a@r product rule is equivalent to the operation with a
(zartesmn tcnsor,
N "In Equation 10.17, if we interchange ¥ and V,

, U’=V'li+V-mj+V-nk=V-(1i+mj+nk)=V-‘1U . . ({1018
which is a lincar vector function different fram U and called
its eomjugate. In Equation 10.17 the dyadic appears as @
prefactor and in Equation 10.18 as a postfacior.

Starting again from

U*V;1+va+V,n
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and cormmutating the scalar products for Ve, Vi V, gives
the identity
U=Viil+ Vim+ Vkn=V (il rim1 ka)= V¥, =¥ V(10.19)
The dyadic ¥, in which the réles of antecedent and con-
scquent are interchanged, is the conjugate dyadic of 7,

. . - . N
Hence any dyadic used as a prefactor is cquivalent to its, { N

conjugate used as a postfactor, If a dyadic is such thaty
WV - VW it is self-comugate; if WV = — Vi 18
anti-sclf-conjugate. ‘L'hese definitions are exactly pagallel
with thoese for the corresponding tensors on p.MIIQt's.'

A dyadjc can easily bc expressed in terras of’ the nine
possible dyads of the anit vectors i, ], k, and inphis so-called
wonion form the relation between dy&hc, tensor and
matrix are even more clearly displaycd:':\(}h p. 106 substi-
tute in U for V,, ¥, V; in terms o\ lfe unit vectors, then

¥= (k.r:c'ii + k;x.v'ii "tvgﬂw]&fll:l braulibrary.org.in
+ (R il RERIE + b ki)
+ (R Al Ak A KK L. (10.20)
and also o
tl;c:[(}‘,a'rn‘l'kyxl.]‘l'z";ﬁi}{) = [(kmu_kxyjp‘kxzkl]

(i kg fK) o (Ryedihy,fia koK)

+(;’aml{i+ky:_,i§j+k;;kk)] + (kz;ik-|-kz_,!jk+k”kk)] {10.21)
which ape{@xactly analogous to the matrices, Equations
10.7 QMQ“fO.S.

Ifadyadic is such that when applied to a vector, either as
aprefactor or as a postfactor, it gives the vector itself, itis
:tZalled the unit dyadic or idemfactor. For this to be the

vease all coefficients kg for which o + # must vanish and

Ry = Ry = Rpe = 1. Then, as is obvious,

I=ii+ji + kk makes I-V = ViI=V, . . (022)
which is equivalent to the unit matrix, since this also
corresponds with U = V. The idemfactor and unit
matrix occupy the same place in dyadic algebra and tensor
calculus as unity in ordinary scalar calculations.
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Tt is outside the scope of this book to enter into further
details of the dyadic algcbra developed by Gibbs or that
of matrices used in dealing with tensors. It will be
sufficient to say that both form complete, parallel and
equivalent systems, and have been applied to a wide
variety of problems in pure and applicd mathematics, ¢
They are of the non-cammutative class in regard to certaid
products which, as with vectors, are matters of definitiow.

7. Application of Linear Vector Functions.{ It is
a matter for personal preference whether ong‘uses the
tensor o dyadic notation in practice, thd(gh prescnt
tendencies would appear to show that tensogsand matrices
are nowadays the more usual. Thesimple  cartesian
tensors we have considered are fundafatntal in all prob-
lems of anisotropy, whether magndudy clectric, thermal ot
elastic, and also in ccrlt,zhin urclw %enmetric applications to
kinematics™ 3 B 13:3I'E{v‘ﬁjé?ggtrgnsformations of rect-
angular axes are involved, ds for example in the treatment
of finite rotations. N

More complex tengors, which we have no space to
discuss, occur ingthe transformation of space-time co-
ordinates fromSome”observer to another in the theory of
relativity. Also, in the general theory of elcctromagnetic
machinery($he” properties of a number of electric circuits
n rclat,'q‘é miotion are connected by sets of linear equations.
The aise*of tensor and matrix notation is a natural means
forJmvestigating such problems as Guabric! Kron has
tecently shown with great success, but this very special

~aapplication is entirely outside the purely vectorial scope

* of this volume and belongs properly to the general algcbra

of tensors,



POLAR CO-ORDINATES

. . - N s
Tan most important operations of vector analysis have been, { N
expressed in the text in tertns of components referred to regte\ ©
angular or cartesian co-ordinates. Summarizing, they arey W

a8, n& oS ™
grad 8= 78 = 'ax‘1+ :Oyj + E’Ek; .o e e s p,.? (“i.‘])
. V. OV, OF: N
div V="V = ‘-‘% + %’ PJIz e e s 8 :'\(4'6! 4.8)

curl V =

R AR VAV
VXV (éy Bz )1+(-Bx _S{a"'jj

Y, ol ’\ -
+ ("ax — 'a},k}:!fs .
L. w5 DS aESW
- divgrad §= ¥ 28 = 508 _Oy_a :’Iﬁ;@vw.dhl'a’ulibra't-y_bréﬁ‘l{)

8 is a scalar and ¥V a vector poig]l‘fﬁmctiom These usually suffice,
but in some problems it isoften more convenient to use some
other system of co-ordipates specially adapted to the matter in
hand ; two of these will\niw be examined.

When there is sftimetry about an axis, such as OZ, the
cylindrical polar Sv columnar co-ordinates shown in TFig. 38
are appropriatéy, ‘The pesition of a point P is specified by the
polar co—a(di.ﬁatés v, @ and the axial distance 2, thesc being
related tcnt:iwx cartesian system by

(N  w=rcos g, v=rsinf and z= =z

Injd Possible to transform the above operations from one system
ot % gther by purcly mathematical means, hut it is more con-
Jineing to work out the operations afresh for the eclement of
N \volurne dr, rd8, dx shown to a larger scule in the lower part of
N/ the diagram, (v, 8, =)} being the co-ordinates of its mid-point.
/ As an example, if ¥, be the radial component of a vector V at

P the flux through the clement in the 7 direction is

oty
( v, + f’bz’jdr)(r 1)l de — (V, - é-'gdr)(r — 3d0)d6 da,
which to the third order of small quantities is

%f'y d8 dy d= + Vd8 dr d.

v {49, 4.10)

110G
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Since the volume of the clement is » o dr dz, the radial com-
ponent of div V is
oV, 1% &

+ - = 6-;(1»1/}).
The other components are [ound by a similar process.  I.ike-
wise, by the method of pp. 43-5 the components of curl ¥ can

79
AW
)
9 . \udl
”

2\
’\‘,,} Fia. 38.—Cylindrical Polar Ceo-ordinates
AN

x’;]}e calculated ; this is left to the readcr as an exercise. Let

) &, b, k be unjt vectors at I, & being in the positive direction

of », b in the sense of the positive tangent to the circle of radius
7 at P (i.e. along the arc rd® and k along OZ. Note that a,
b, k form a mutually perpendicular, right-handed system; a
and b, though of unit magnitude, are functions of the position
of P. Then, if V., Vs V. arc components of the vectur point
funetion V in the a, b and k directions respectively, it is easy
to show that
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' . DS 188 a8
rad 5= S=_"a+-—.bh+ Tk;
& oy + ¥ 0f F Ay !

e e s 1 aly ol
v Ve UV = f P, rave  Hie,
v 5 ray(!r,—)-l- + ar !

r Of
107,  at Ay, ol

) el Vo ¥ X V= |- — 220 e _

| avevav= (P - er (5 -5
/D ol
+ ;(&(?‘V{-) - —.——-)k

}?)_(gé‘\ B L RN N

roary

livgrad § = VE5 = o 2T
gra VS 5 ) "yt om o s ™

¥

{:}"’ .. vafume
)  element
\ !
™3 :
\‘s -
S)
\ oo/
_’/' o S -

Frc. 39.—Spherigal Polar Co-ordMates

When therc is symmetry about 2 point, a5 in many geometrical
and dynamical problemns, the spherical polar co-ordinates shown
in Fig. 39 are useful. The position of P is given by the radius
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. r, the angle of co-latitude between OZ und #, and the angle of
longitude ¢ between the ZOX plane and that which contains
0Z and r. ‘The relation to the cartesian system is

x=rsinfcos ¢, y=sn fsiné and x =7 cos b,

Taking {r, 6, ¢) as the co-ordinates of the middle of the volume
element dr, rd?, r sin 8dd, let a, b, ¢ be a right-handed orthognnal
set of unit vectors at I in the positive directions of these incre-

It V., ¥V, Vy are componenis of a vector point function ‘ 4o
these directions, it is easy to prove for the volume elemepi§ t:on-

sidered that '..,\ 3
o 0S 108 1 38 <
gradS:vS—ara_]—;\_ﬁ'_b‘F?smﬁﬂh;’: \§
A hl)h
div V=5"VV= p f —
¥ vy r EQ Ry rt.mfa' ‘w(V’ si \69“\7 Fsin 0 og '

curl Ve W x V=

¥ sin U[OU ¢ sin E}J N\ YXF]\J
Wiy dq?rt aﬁd}bi? ar f?‘f‘%ﬂh |:t); (rFu) — > :|C ;

divgrad S = (38 = = b ( o j LI o (sm GOS)

.@“3_‘ #2 sn 000
1 N
...‘{\ * o gnTF 07
g\'\'\.;
N
t.‘\)
p.\ \)
'\sl
\l
i‘.l
O
“'1"0

A, .
LA
ments; note that a, b, € are functions of the position of P"\\“I.’



PROPERTIES OF ¥ AS A FORMAL VECTOR

On p. 33 a definition of ¥ in cartesian vector form has been
given, but it must be romembered that 7 cannot be regarded M\
as A true vector since D/Ox, 0/%y, D/0x are differential operatcre e
and not true scalars, The symbol ¥ actuzlly denotes an\in-
variant vector dilferentiator and, as such, requires an operind,
whether sealar or vector, upon which it can appropriately act.
Tts expression in vectorial form, therefore, can only{be “talen as
symibolic or formal, inasmuch as behaves like 2 ¥¢ctor in formal
associative and distributive differentiations suchy Bs

T+ W)= TU+ TN
or TOW) = (VIO + UG &
where U7 and W are scalar point functienss these and many other
simple operations the reader will ﬁnﬂ Jh the text-books and may
easily verify. . ,,;www_clbraulibl'ary_org_in

Tt must not be assumcd,.hniyc;.-'er, that 7 in more complex
aperations wecessarily obeys aﬂ *the rules of vector algebra, since
7 is only formally and Hot actually a vector. Carc must be
taken to see that rigidsapplication of those rules does not destroy
the ditferentiative {aﬁg t of the complete operation. Particular
care is needed ié\ wiing the commutative law; examples are
found in the‘(ﬁerations -V oand ¥V xV on a vector point
function V, Gwhich becorne meaningless when commutated (sec
pp. 42 and 45). We conclude, therefore, that V is essentially
and p\fn}arily an operator ; sccondarily, and then only as an
analytical convenience, is it cxpressed in cartesian vector form.

Ix\’tgrrangmg moare complex operations the object should always
{Be'to choose such a use of the vector laws as will leave differentias
) tive operations available to act on the operand.

An important practical case is that of the operator defined by
C-%7 where

C=Cl+Ci+Ck

is & constant vecter, i.e. one independent of x, v, . Taking the
scalar product gives

C C 0 C ° [
Vo= Cogy ¥ gy + Cogp

113
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which is a scalar differentiator applicable either to a scalar or to &
vector point function. Note that -C would vanish and thos
have notkme(lmng In particular let

'n\"‘r-,x

C—=ci+tej+ek

be a vector of unit length in a given fixed divection delined by
€q, Oy, €,, 1ts compuonents along the axes, ie. by the dircction-
cosines of €. Then the operation

A

5 =

I"}
< 3
Apply this operator to a scalar point function .S, }hv

NV
Ay a8 RS NN
(oWV)S = rap cyoy + e, 7 NV

[u)=2

Now from Equation 4.3 x'\\"
JS 08\ b;

grad §= \_’S-— -1+ \}.1 J+ Jk,

is the gmlcs.t%w&hﬁ%véabmrmyadlboim in magnitude and
direction ; and ¢-{grad S} is the) tt’qnhcd or component magni-
tude of the rate of increase ig™ the direction of ¢, a scalar point
function. Caleuluting thtq*s;;'ﬂar product and comparing results
shows that

{c- m ¢ (grad 8) = {7 Sh

‘This is known ax?hc dtrecfwﬂal devivative of S in the dirsction
of ¢, expressing, the magnitude of the rate of increase of 5 in this
specitied dmc%l@n at any point. Similarly, for a vector point
function \ /
0\.‘0 V= Vwi + V,y] + Vzk,
C \" L7V == (e )V i+ (e )i+ (e )V K,
) AN 17y EJV OV,
W @VVamdag o g ags
/) is the directional derivative of V in the direction of €3 it is a
vector point function.
‘This theorem provides an alternative proof of a result given
on p. 47, namely, to calculate 7 x ¢ x r, where
w= i+ wft ok
is a constant vector and

r=uai+y+ 2k
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is a variahle onc. FExpanding as a vector triple product by
Equation z.22,
TV % % T =(V Tl ~ (V)T

But
- (‘a O . l\ ) i By Dy 2
\"r-_\IS.;:-l—J?)? ki ol s k) = B.;+ay+hz=3 *q
Now from above % -t has no operational meaning ; we interpret 0}
it, therefore, as w' V. Substituting for C, O %
o [s) B 5} \\\’
WY = wrax + U)B,'ay + wﬁaz, <\3
and <:\}
(o, + o+ i)
(m ST = Wiz 4 m?’\v + @, (“-'_}K\
= wx.l + aa,r] + aek =10, ¢
Finally, b *
X R = 3w 24,

as found by direct expansion on P. ‘4

\t i\rww dbraulibr
N\ ary.org.in
33*
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Tue Bibliography of Vector Analysis is very extensive and it is a
not possible to do more than refer to 3 fow of the books Hkelg. \
to be useful to the rcader of this momnograph. J. G. Coffih,
Vector Analysis.  An introduction to wvector methods and\, r?xezr
varions applications to physics and mathematics [Wileyd l(jII) ;
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graph and arc liberallty provided with e\gr‘c:aeq to enable the
student to test his progress. The standard classic on the subject
is E. B. Wilson, Vector Analysis (Scribgler, 1yoz), based directly
on the leuﬁuxm;]dwa(}p}ﬁjsﬁﬂ,\tg{s@em\ clopaedic scope makes it
more valuable for reference thaufor continued study, In German
there are many treatises, ong Sf¥he most complete being J. Spiel-
rein, Vektorrechmumg (Wi 1t‘mev, 10z6). Excellent sinaller works
are R. Gans, Vekmraﬂabm mit Anwendungen auf Fhysih und
Techmik (Teubner, xg&?), published also in English by Messrs.
Blackie ; 5. V'llentmer Vektoranalysis {de Gruyter, 1929); and
H. Schrmdt, g Pmmg in die Vektor- und Tewsar-vechmung
{Tinecke, 1933 Lhe properties of Cartesian tensors are fully
developed byNH. Jeffreys, Cartesian Tensors (Cambridge Uni-
versity Pre%\, rg31) An excellent elementary account of matrix
algebra'\s given by C. V., Durcll and A. Robqon Advanced
Algebrdy/Vol. 3 (BclI 1937).
mong books using vector methods the writings of (. ITeavi-

.,sfﬁk are classic, but of considerable difficulty. The reader may
ebtain many useful ideas from Vol. 1 of Electromagnetic Theory.

"M. Abraham and A. Foppl, Einfikrung tn die Maxwellsche Theorie
der Elekirizitdt (Teubner, 1907) is specially to be recommended.
G. Joos, Theoretical Physics (Blackie, 1934} covers the whole range
of mathematical physics by exclusively vectorial methods and is
an excellent book for the more advanced reader.
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NOTATION

THE notation used in this bool is that of Gibbs, with the additionall \Y;
adoption from Loreniz of the term ° grad > to represent Ha "
differcntistion of a scalar by the operator ¥. On the Con;fngﬁt
certain dilferences of notatinn decur and these also appear, in same
English books (often translations). These are (i) thg'usc of
AB instead of AL, or the employment of round bragkets (AB)
to denote the scalar product.  (if) "The use of [AB] for the vector
product Ax1, (i) The substitution of ‘ rut for ‘eurl . (iv)
The writing of A.B or of A5 B for the dyad &B\\Thcse differcnces
are easily remembered and vector equatidps”can be read with
equal facility either in the Gibbs or theg ‘Continental system after
a hittle practice. « \J

Heaviside uses an unsymmetrieal; potagip "ﬂ mukes his
writings unnecessarily hard to folkﬁwa%vﬁge \'Jsespi ]ﬁﬁg 'y £BEY
the scalar and vector prodycts’ respectively.

In reading vector equatigils, expressions such as A-B and
Ax D are read *A dgB\B* and ‘A cress B’ respectively.
Similarly, 7.5 is read&del 57, TV is ‘del dotV’and ¥V X v
is *del cross V2ie\,

The notatign *Q} line, surface and volume integrals follows

Gibbs, le. N\
| "I i, S5 s and 11 e
respectivelyy the number of integral signs being a useful reminder
that g }:}‘: one, ds two and dv three dimensions of length irrespec-
tive \of any particular co-ordinate system.
A%storicaliy the torms used in vector analysis arc of great
Jdntevest. Although the eperator 77 was introduced by Hamilton
“She left ifs development 1o his disciple P. G. Tait, who adopted
the name ° nabla® for this symbol, following a suggestion of
W. Robertson Smith. Maxwell suggested atled ’, but the
name * del * due to Gibbs is preferred for shortness and euphony.
To Maxwell are due the terms °slope * (for ‘grad ), ' convers
gence * {for — * div’), * curl * and ‘ concentration "{for V3.
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NOTE ON MAXWELL’S EQUATIONS{,\

\A
TuE deduction of Maxwell's equations for the (:Ic:\:’é”/%- -
magnetic ficld given on p. 92 ef seg. follows that given in
Chap, IX, Vol I{ of his Treatise on Eler:(r@@_v" and
Magnet fzm, all quantities being expressed in cl'g;‘o'tg&na gnetic
units, [t is very commeon practice, howéyty) to state ¢,
H, pand B in the electromugnetic systermp\Dut €, » and D
in the electrostatic system, [f @ is .t*ﬁ\\t} velocity of light
in free space the last three quan{it}L s are expressed In
clegtromuagnetic units by writinghye €, «,/5? and D/,
I‘:q‘t’rﬂ\ﬁgﬁé%)l;%ufh[?{‘?ll%eé'ﬁlég . o‘:}flb
§~“‘

- , I\‘-’& LG
Ceci AP =cq -— ¥;
N 4te

and the field Equati{g@s g.4 and g.5 are

K ox

)Y R
\(Qi‘ﬂl Iluq.ft(_,- 47TC i_c

2N

S curd € -1 o F I,
NS/ o ¢
t.ogt:thﬁ"i“f;'ith
O div B=0
Eh) div D =g

:»\"&Thc reader will find it a useful excreise to wark out any
W modifications introduced into Equations 9.6 to g.13 by
the use of this mixed system of units,
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INDEX

Addition of vectors, 6

Alfinor, g8

d’Alembertian operator, 95

Ampére’s rule, 83

Angular velocity, 46
cormpounding of, 46
relation to cuel, 47, 11y

Associalive law, for scalars, 3
for vector sum, 8

Biot-Savart law, 85

Circuital theorem, 7y

Decomnposition of field inta
lamellar  and qolcnou‘l,}k
COTNRpONCDEs, §3
el aperator, 33, 113 ¢ }
Differentiation of \(‘(.tol.b 29
sums and pru)dur
tripie product®3 \
¥ ~
partial, 32
det operat B3 113
DJ%ttlb\ltu‘L%&\, for scalars, 3
for gealae product, 17
fopwdetor product, z4
Dhyoergenee of curl, 33

N\

W W (!_hmuﬁph):m%} gj,%iﬁ;gt (31

Cormutative law, for scalacs, 3 o sz\croenw of vector ficld, 39

{for scalar product of tmo.
vectors, g \ ,;
Curl of curl, 33 4
Curl of gradient, 51 m\\
Curl of vector fieid, s )
inrectangularen }dm"mtcs,:{.s
as aperation MR x, 45
examples gf}i’g}:‘g’
rntatign}_)f rigid body, 45,
115
mtxmrl of fluid, 47
eétmmqgnetl 1, 48
‘&p})hcanun of  Stokes’s
% theorem to, 64, 65
v Invariance of, 66
in cylindrical co-ordinates,
III
in spherical co-ordinates, 112
Cyclic regions, 76
Cylindrical polar co-ordinates,
25

N

inrectangular co-ovditutes, 49

as operation, Ve, 43

meaning of, 4t

Guuss’s thearem, 59

invartance of, 63

inecylindrical co-ordinates, 111

in spherical co-ordinates, 112
Dyadics, 103

dyads of, 106

conjugate of, 1a0

norion form of, 107

relation to tersor and matrix,

197

Fields, scalar, 12
level surfaces i,
veckor, 12
lines of Aow in, 13
Finite rotations, 7, 40
Flux, line of, 12
total, zo

Iz
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Gauss'’s theorem, 5g
applied to inverse square law,
61
Gradient of divergence, 52
Gradicnt of scalar field, 33, 33
as operator vV, 35
meaning of, 33, 38
in rectangular co-erdinates,
36
incyhindricsl co-ordinates,111
in spherical co-ordinates, 112

Heimheltz’s theorem, 55

idemfactor, 107

[nverse square law, 54, 68
point sources, 56
Gauss’s theorem, 61
applied to electric ficld, 6g°

Frrotational motion, 48

A rauhbrar Org. i
Ldmci'f’lr vector, 17, .§ Q

closed linc integral of,,;;S
Laplace’s equation, 54 s
Laplace’s operator, &1

as div grad, 5L ..‘\

in rectang&g’sm -ordinates,

5I

incylindfieal co-ordinates, 111

in Sphe:; 4l co-ordinates, 112
Level SU.I'I'«ICC, 12, 34, 6%
Life\iflerral of vector, 18

"}ne’amng of, 10

"§‘ in lamellar field, 37, 38

VECTOR ANALYSIS |

Lincar vector function— contd
resolution of, 104
repeated, o4
dyadic of, 107
nonion form of, 107 ;

Magnetic ficld, of straight wizge,

77 2\
of current-carrying mem{ium,
79 D

of linear currentgg ‘84
Mugnetic shell, ;8’
couivalent tco\pfrear current,

86, 90" ) :
T\-‘Iatrix, 9%
conjagate, oo

aund symmetrical, 100
esolution of, 104
{\pfoduct, 103
“unit, 155
I\rIachll s equations for e.am
field, o1, 118
in conductors, 03
in diclectrics, 94
energy relations, g3
Multivalued potentials, 75, 82
cyelic and acyclic regions, 76

MNabla operator, 33 :
Newlonian potential, 38 :
Normal, positive sign of, 19 ,i
Notation, comparison of, 117

AN Line of flow, 12 Operator, del, 33, 113
AN o L%nc, vector cquation af, 7 Rfad, 35, 36
\J I.inear currents, theory of, 84 div, 40, 42
} equivalent magnetic shefl, 86 curl, 43

PR

div grad, 51, 52
grad div, 52

div curl, 53

curl curl, 53
potential, 73, 83
d*Alembertian, 9§

Lincar vector functinn, g7
principual axes, 7
cartesiun tensor of, g8
conjugate of, gy, 106
skew, 100
symmetrical, 100
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rtial differentiation of vee-
tors, 32

ane, vector equation of, 17

int futiction, 12

int source, 56, 68

isson’s equation, g4, 73

lar co-ordinates, 109

tential operator, 73

tential, sealar, 38, 67

of point source, 57, 68

Newtonian, 58

in electric field, 7o

of surface distribution, 71

of volume distributions, 72

multivalued, 74

tentizl, vector, 53, 91

in lamellar reginn, 82

of lincar currents, 84, go

yvnting’s theorem, g6

oducts of more than three
vectoes, 27

oducts of three vectors, 25

oducts of two vectors, scalar,

™
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vector, 20
eudoscalars, 26
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station, 43, 48 \\ b

alar alpehra, 3\

alar, definitierlof, 1

alar pote}a{{a,l ‘fields, 12, 38

of pointispurce, 37, 68

level\strfuces in, 67

lagacllar nature of, 68

sfsurface distributions, vx

of volume distributions, 72

multivalued, 74

alar product of two vectors,
14

commutative property of, 15

conditions for zero, 13

self, 15

application to unit vectors, 16

21

Sealar product of two vectors
—contd
distributive law, 16
inrectangular co-ordinates, 17
differentiation of, 31
Scalar triple product of vectors,
z5
in rectangular co-ordinates,
26
Solenoidal vector, 41, 54
Solid angle, b1
and magnetic shell, 78
Spherical polar eo-or dinates{ii 1
Stokes’s theorem, 63\
Subtraction of vectors,\&’
Surface integral c{yector, 59
meaning uf,’ 20,
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Tensors, g:ai:tesian, o8
conjugate, 99
skew, 1

~
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SveBrgolirary org.in

\xepresentation by  ellipsoid,
- 1c3
resolution of, 104
product of, 104
unit, 105
Triple product, scalar, 25
vector, 27
differentiation of, 3t

Unit dyadic, 107
Unit tensor, 105
Unit vectors, 10, 16, 22

Vector area, 22
of closed surface, 23

Vector, definition of, 2
graphical representation of, 4
scalar multiplication, §
polar, 5
axial, 6

Vector fields, 12
classification of, 54
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Vector potential, 53, 70, 81
caleulation of, 82
in latnellar region, 82
of linear currents, 84
of straight wire, 88
of circle, go
Vector product of two vectors
20
non-commutative property,
21
distributive law, 24

in rectangular co-ordinates, .

24
differentiation of, 31
divergence of, ¢9
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VECTOR ANALYSIS
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Vector quantities, 1
invariance of, 10
Vector triple product of vect
27
Vectors, addition and subed
tion of, 6
associative law for sum, §
cotnponcnts of, §

O\

sum in rectangular ccﬁo

ates, ¥
products of tv.o &x J
scalar, I4 |
vector, i
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